Home
Class 11
MATHS
If the roots of the quadratic equation x...

If the roots of the quadratic equation `x^2+p x+q=0` are `tan30^0` and `tan15^0,` respectively, then find the value of `q-p` .

A

2

B

3

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( q - p \) given that the roots of the quadratic equation \( x^2 + px + q = 0 \) are \( \tan 30^\circ \) and \( \tan 15^\circ \). ### Step-by-Step Solution: 1. **Identify the Roots**: The roots of the quadratic equation are given as: \[ r_1 = \tan 30^\circ \quad \text{and} \quad r_2 = \tan 15^\circ \] 2. **Calculate the Values of the Roots**: Using trigonometric values: \[ \tan 30^\circ = \frac{1}{\sqrt{3}} \quad \text{and} \quad \tan 15^\circ = 2 - \sqrt{3} \] 3. **Sum of the Roots**: The sum of the roots \( r_1 + r_2 \) is given by: \[ r_1 + r_2 = \tan 30^\circ + \tan 15^\circ = \frac{1}{\sqrt{3}} + (2 - \sqrt{3}) \] Simplifying this: \[ r_1 + r_2 = \frac{1}{\sqrt{3}} + 2 - \sqrt{3} \] 4. **Product of the Roots**: The product of the roots \( r_1 \cdot r_2 \) is given by: \[ r_1 \cdot r_2 = \tan 30^\circ \cdot \tan 15^\circ = \frac{1}{\sqrt{3}} \cdot (2 - \sqrt{3}) \] 5. **Using Vieta's Formulas**: According to Vieta's formulas for the quadratic equation \( x^2 + px + q = 0 \): - The sum of the roots is equal to \( -p \): \[ -p = r_1 + r_2 \] - The product of the roots is equal to \( q \): \[ q = r_1 \cdot r_2 \] 6. **Set Up the Equations**: From the above, we have: \[ p = -\left(\frac{1}{\sqrt{3}} + 2 - \sqrt{3}\right) \] \[ q = \frac{1}{\sqrt{3}}(2 - \sqrt{3}) \] 7. **Calculate \( q - p \)**: Now we need to find \( q - p \): \[ q - p = q + \left(\frac{1}{\sqrt{3}} + 2 - \sqrt{3}\right) \] Substitute the value of \( q \): \[ q - p = \frac{1}{\sqrt{3}}(2 - \sqrt{3}) + \left(\frac{1}{\sqrt{3}} + 2 - \sqrt{3}\right) \] 8. **Simplifying \( q - p \)**: Combine the terms: \[ q - p = \frac{1}{\sqrt{3}}(2 - \sqrt{3}) + \frac{1}{\sqrt{3}} + 2 - \sqrt{3} \] \[ = \frac{2 - \sqrt{3} + 1}{\sqrt{3}} + 2 - \sqrt{3} \] \[ = \frac{3 - \sqrt{3}}{\sqrt{3}} + 2 - \sqrt{3} \] 9. **Final Calculation**: After simplification, we find: \[ q - p = 1 \] ### Conclusion: Thus, the value of \( q - p \) is \( 1 \).

To solve the problem, we need to find the value of \( q - p \) given that the roots of the quadratic equation \( x^2 + px + q = 0 \) are \( \tan 30^\circ \) and \( \tan 15^\circ \). ### Step-by-Step Solution: 1. **Identify the Roots**: The roots of the quadratic equation are given as: \[ r_1 = \tan 30^\circ \quad \text{and} \quad r_2 = \tan 15^\circ ...
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|123 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|22 Videos
  • PROBABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|45 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|59 Videos

Similar Questions

Explore conceptually related problems

If the roots of the quadratic equation x^2+p x+q=0 are tan30^0a n dtan15^0, respectively, then find the value of 2+q-pdot

If the roots of the quadratic equation x^2 +px+q=0 are tan 30 ^@ and tan 15^@ , respectively then the value of 2 + q-p is

If the roots of the equadratic equation x^(2) + px + q = 0 " are " tan23^(@) "and" tan22^(@), then find the value of q - p .

If the roots of the quadratic equation x^(2)+px+q=0 are tan 30^(@) and tan15^(@) , then value of 2+q-p is

If the roots of the equation x^2 + px-q = 0 are tan 30^@ and tan 15^@ then the value of 2-q-p is

Find the roots of the equations. Q. x^(2)-2x+5=0

Find the roots of the equations. Q. 2x^(2)+x-3=0

If p,q are roots of the quadratic equation x^(2)-10rx -11s =0 and r,s are roots of x^(2)-10px -11q=0 then find the value of p+q +r+s.

The roots of the quadratic equation 4x^(2)-(5a+1)x+5a=0 , are p and q. if q=1+p, calculate the possible values of a,p and q.

If-4 is a root of the quadratic equation x^2+p x-4=0 and the quadratic equation x^2+p x+k=0 has equal roots, find the value of kdot

OBJECTIVE RD SHARMA ENGLISH-QUADRATIC EXPRESSIONS AND EQUATIONS -Chapter Test
  1. If the roots of the quadratic equation x^2+p x+q=0 are tan30^0 and tan...

    Text Solution

    |

  2. The set of values of a for which x^2+ax+sin^(-1)(x^2-4x+5)+cos^(-1)(x^...

    Text Solution

    |

  3. The set of possible values of lambda for which x^2-(lambda^2-5 lambda...

    Text Solution

    |

  4. The equation (a + 2)x^2 + (a-3)x = 2a - 1, a != -2 has roots rational ...

    Text Solution

    |

  5. If cos alpha, sin beta, sin alpha are in increasing G.P. , then roots ...

    Text Solution

    |

  6. If alpha,beta are roots of x^2-3x+a=0,a in Ra n dalpha<1<beta, then f...

    Text Solution

    |

  7. If the equations ax^2+bx+c=0 and cx^2+bx+a=0, a!=c have a negative com...

    Text Solution

    |

  8. If the roots of the equation x^3-12x^2 +39x -28 =0 are in AP, then the...

    Text Solution

    |

  9. If the roots of a1x^2 + b1x+ c1 = 0 are alpha1 ,beta 1 and those o...

    Text Solution

    |

  10. If the roots of the equation ax^(2)-4x+a^(2)=0 are imaginery and the s...

    Text Solution

    |

  11. If a, b, c are positive real numbers, then the roots of the equation a...

    Text Solution

    |

  12. If the absolute value of the difference of the roots of the equation x...

    Text Solution

    |

  13. If alpha, beta be roots of the equation 375x ^(2) -25x-2=0 and s (n) =...

    Text Solution

    |

  14. The quadratic equation x^(2) + (a^(2) - 2) x - 2a^(2) and x^(2) - 3x +...

    Text Solution

    |

  15. The roots of ax^(2) +bx +c =0 " whose " a ne 0, b ,c in R , " are non...

    Text Solution

    |

  16. The value of m for which the equation x^3-mx^2+3x-2=0 has two roots ...

    Text Solution

    |

  17. If the equation formed by decreasing each root of the a x^2+b x+c=0 by...

    Text Solution

    |

  18. If the roots of the equation ax^2-bx-c=0 are changed by same quantity ...

    Text Solution

    |

  19. If x^2-2rprx+r=0; r=1, 2,3 are three quadratic equations of which each...

    Text Solution

    |

  20. If x ^(2) + px +1 is a factor of ax ^(3) + bx +c, then:

    Text Solution

    |

  21. If (x-1)^3 is a factor of x^4+ax^3+bx^2+cx-1=0 then the other factor ...

    Text Solution

    |