Home
Class 11
MATHS
an=p(alpha^n)+q(beta^n) where alpha=(1+s...

`a_n=p(alpha^n)+q(beta^n) `where `alpha=(1+sqrt(5))/2 and beta = (1-sqrt(5))/2` , also `a_(n+1)=a_n+a_(n-1)`. If `a_(4) = 28, "then" p + 2q =`

A

21

B

11

C

7

D

12

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the values of \( p \) and \( q \) given the expression for \( a_n \) and the recurrence relation. ### Step 1: Define the sequences We start with the expression for \( a_n \): \[ a_n = p \alpha^n + q \beta^n \] where \( \alpha = \frac{1 + \sqrt{5}}{2} \) and \( \beta = \frac{1 - \sqrt{5}}{2} \). ### Step 2: Calculate \( a_0 \) and \( a_1 \) Substituting \( n = 0 \): \[ a_0 = p \alpha^0 + q \beta^0 = p + q \] Substituting \( n = 1 \): \[ a_1 = p \alpha^1 + q \beta^1 = p \alpha + q \beta \] ### Step 3: Use the recurrence relation to find \( a_2 \), \( a_3 \), and \( a_4 \) Using the recurrence relation \( a_{n+1} = a_n + a_{n-1} \): For \( a_2 \): \[ a_2 = a_1 + a_0 = (p \alpha + q \beta) + (p + q) = p \alpha + q \beta + p + q \] For \( a_3 \): \[ a_3 = a_2 + a_1 = (p \alpha + q \beta + p + q) + (p \alpha + q \beta) = 2p \alpha + 2q \beta + p + q \] For \( a_4 \): \[ a_4 = a_3 + a_2 = (2p \alpha + 2q \beta + p + q) + (p \alpha + q \beta + p + q) \] \[ = 3p \alpha + 3q \beta + 2(p + q) \] ### Step 4: Substitute the known value of \( a_4 \) We know \( a_4 = 28 \): \[ 28 = 3p \alpha + 3q \beta + 2(p + q) \] ### Step 5: Substitute the values of \( \alpha \) and \( \beta \) Substituting \( \alpha \) and \( \beta \): \[ 28 = 3p \left(\frac{1 + \sqrt{5}}{2}\right) + 3q \left(\frac{1 - \sqrt{5}}{2}\right) + 2(p + q) \] \[ = \frac{3p(1 + \sqrt{5}) + 3q(1 - \sqrt{5})}{2} + 2(p + q) \] \[ = \frac{3p + 3q + 3p \sqrt{5} - 3q \sqrt{5}}{2} + 2(p + q) \] ### Step 6: Combine like terms Combine the terms: \[ = \frac{3(p + q) + (3p - 3q) \sqrt{5}}{2} + 2(p + q) \] \[ = \frac{3(p + q)}{2} + 2(p + q) + \frac{(3p - 3q) \sqrt{5}}{2} \] \[ = \frac{3(p + q) + 4(p + q)}{2} + \frac{(3p - 3q) \sqrt{5}}{2} \] \[ = \frac{7(p + q)}{2} + \frac{(3p - 3q) \sqrt{5}}{2} \] ### Step 7: Set up equations Setting the rational and irrational parts equal: 1. \( \frac{7(p + q)}{2} = 28 \) 2. \( \frac{3(p - q) \sqrt{5}}{2} = 0 \) From the second equation, since the coefficient of \( \sqrt{5} \) must equal zero: \[ p - q = 0 \implies p = q \] From the first equation: \[ 7(p + q) = 56 \implies p + q = 8 \] Since \( p = q \): \[ 2p = 8 \implies p = 4, \quad q = 4 \] ### Step 8: Find \( p + 2q \) Now we can find \( p + 2q \): \[ p + 2q = 4 + 2 \times 4 = 4 + 8 = 12 \] Thus, the final answer is: \[ \boxed{12} \]

To solve the problem step by step, we need to find the values of \( p \) and \( q \) given the expression for \( a_n \) and the recurrence relation. ### Step 1: Define the sequences We start with the expression for \( a_n \): \[ a_n = p \alpha^n + q \beta^n \] where \( \alpha = \frac{1 + \sqrt{5}}{2} \) and \( \beta = \frac{1 - \sqrt{5}}{2} \). ...
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|123 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|22 Videos
  • PROBABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|45 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|59 Videos

Similar Questions

Explore conceptually related problems

If a_(1)=3 and a_(n)=2a_(n-1)+5 , find a_(4) .

If a_(0) = 0.4 and a_(n+1) = 2|a_(n)|-1 , then a_(5) =

If a_(1)=5 and a_(n)=1+sqrt(a_(n-1)), find a_(3) .

In the sequence a_n , then nth term is defined as (a_(n - 1) - 1)^2 . If a_(1) = 4 , then what is the value of a_2 ?

Find a_(1) and a_(9) if a_(n) is given by a_(n) = (n^(2))/(n+1)

If a_(n+1)=a_(n-1)+2a_(n) for n=2,3,4, . . . and a_(1)=1 and a_(2)=1 , then a_(5) =

Let log_(3)N=alpha_(1)+beta_(1) log_(5)N=alpha_(2)+beta_(2) log_(7)N=alpha_(3)+beta_(3) where alpha_(1), alpha_(2) and alpha_(3) are integers and beta_(1), beta_(2), beta_(3) in [0,1) . Q. Difference of largest and smallest values of N if alpha_(1)=5, alpha_(2)=3 and alpha_(3)=2 .

Find the first five terms of the following sequences and write down the corresponding series (i) a_(n) = (1)/(5) (2n -3) (ii) a_(1) =a_(2) = 1 , a_(n) = a_(n-1) + a_(n-2) , n gt 2

If a_n = (a_(n-1) xx a_(n-2))/(2), a_5 = -6 and a_6 = -18 , what is the value of a_3 ?

If alphaa n dbeta are the rootsof he equations x^2-a x+b=0a n dA_n=alpha^n+beta^n , then which of the following is true? a. A_(n+1)=a A_n+b A_(n-1) b. A_(n+1)=b A_(n-1)+a A_n c. A_(n+1)=a A_n-b A_(n-1) d. A_(n+1)=b A_(n-1)-a A_n

OBJECTIVE RD SHARMA ENGLISH-QUADRATIC EXPRESSIONS AND EQUATIONS -Chapter Test
  1. an=p(alpha^n)+q(beta^n) where alpha=(1+sqrt(5))/2 and beta = (1-sqrt(5...

    Text Solution

    |

  2. The set of values of a for which x^2+ax+sin^(-1)(x^2-4x+5)+cos^(-1)(x^...

    Text Solution

    |

  3. The set of possible values of lambda for which x^2-(lambda^2-5 lambda...

    Text Solution

    |

  4. The equation (a + 2)x^2 + (a-3)x = 2a - 1, a != -2 has roots rational ...

    Text Solution

    |

  5. If cos alpha, sin beta, sin alpha are in increasing G.P. , then roots ...

    Text Solution

    |

  6. If alpha,beta are roots of x^2-3x+a=0,a in Ra n dalpha<1<beta, then f...

    Text Solution

    |

  7. If the equations ax^2+bx+c=0 and cx^2+bx+a=0, a!=c have a negative com...

    Text Solution

    |

  8. If the roots of the equation x^3-12x^2 +39x -28 =0 are in AP, then the...

    Text Solution

    |

  9. If the roots of a1x^2 + b1x+ c1 = 0 are alpha1 ,beta 1 and those o...

    Text Solution

    |

  10. If the roots of the equation ax^(2)-4x+a^(2)=0 are imaginery and the s...

    Text Solution

    |

  11. If a, b, c are positive real numbers, then the roots of the equation a...

    Text Solution

    |

  12. If the absolute value of the difference of the roots of the equation x...

    Text Solution

    |

  13. If alpha, beta be roots of the equation 375x ^(2) -25x-2=0 and s (n) =...

    Text Solution

    |

  14. The quadratic equation x^(2) + (a^(2) - 2) x - 2a^(2) and x^(2) - 3x +...

    Text Solution

    |

  15. The roots of ax^(2) +bx +c =0 " whose " a ne 0, b ,c in R , " are non...

    Text Solution

    |

  16. The value of m for which the equation x^3-mx^2+3x-2=0 has two roots ...

    Text Solution

    |

  17. If the equation formed by decreasing each root of the a x^2+b x+c=0 by...

    Text Solution

    |

  18. If the roots of the equation ax^2-bx-c=0 are changed by same quantity ...

    Text Solution

    |

  19. If x^2-2rprx+r=0; r=1, 2,3 are three quadratic equations of which each...

    Text Solution

    |

  20. If x ^(2) + px +1 is a factor of ax ^(3) + bx +c, then:

    Text Solution

    |

  21. If (x-1)^3 is a factor of x^4+ax^3+bx^2+cx-1=0 then the other factor ...

    Text Solution

    |