Home
Class 11
MATHS
Let alphaa n dbeta be the roots of x^2-x...

Let `alphaa n dbeta` be the roots of `x^2-x+p=0a n dgammaa n ddelta` be the root of `x^2-4x+q=0.` If `alpha,beta,a n dgamma,delta` are in G.P., then the integral values of `pa n dq` , respectively, are `-2,-32` b. `-2,3` c. `-6,3` d. `-6,-32`

A

`-2, -32`

B

`-2, 3`

C

`-6, 3`

D

`-6, -32`

Text Solution

Verified by Experts

The correct Answer is:
A

Since `alpha, beta` are the roots of the equation `x^(2) - x + p = 0 and gamma, delta` are the roots of the equation `x^(2) - 4x + q = 0`. Therefore,
`alpha + beta = 1, alpha beta = p, gamma + delta =4, gamma delta = q`
Let r be the common ratio of the G.P. `alpha, beta, gamma, delta`. Then,
`beta = alpha r, gamma = alpha r^(2) and delta = alpha r^(3)`.
Now,
`alpha + beta = 1 rArr alpha + alpha r = 1`
`gamma + delta = 4 rArr alpha r^(2) + alpha r^(3) = 4`
`therefore" "(alpha r^(2) + alpha r^(3))/(alpha + alpha r) = 4 rArr r = +- 2`.
CASE I When r = 2
In this case, we have `alpha + beta = 1`
`rArr" "alpha + alpha r = 1 rArr 3 alpha = 1 rArr alpha = (1)/(3)" "[because r = 2]`
`therefore" "p = alpha beta = alpha^(2) r = (2)/(9)`
But, p is an integer. Therefore, r = 2 is not possible.
CASE II When r = - 2
In this case, we have `alpha + beta = 1`
`rArr" "alpha + alpha r = 1 rArr -alpha = 1 rArr alpha = -1" "[because r = -2]`
`therefore" "alpha + beta = 1 rArr beta = 2`
Now, `p = alpha beta rArr p = - 2`
and, `q = gamma delta = (alpha r^(2))(alpha r^(3)) = - 32`
Hence, `p = -2 and q = -32`.
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|22 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|138 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|50 Videos
  • PROBABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|45 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|59 Videos

Similar Questions

Explore conceptually related problems

Let alpha,beta be the roots of x^2-x+p=0a n dgamma,delta are roots of x^2-4x+q=0. If alpha,beta,gamma,delta are in G.P., then the integral value of pa n dq , respectively, are -2,-32 b. -2,3 c. -6,3 d. -6,-32

Let alpha,beta be the roots of x^2-4x+A=0 and gamma,delta be the roots of x^2-36x+B=0 .If alpha,beta,gamma,delta form an increasing G.P. and A^t=B , then value of 't' equals:

Let alpha, beta " the roots of " x^(2) -4x + A =0 and gamma, delta " be the roots of " x^(2) -36x +B =0. " If " alpha, beta , gamma, delta forms an increasing G.P. Then

Let alpha_1,beta_1 be the roots x^2-6x+p=0a n d alpha_2,beta_2 be the roots x^2-54 x+q=0dot If alpha_1,beta_1,alpha_2,beta_2 form an increasing G.P., then sum of the digits of the value of (q-p) is ___________.

Let alpha_1,beta_1 be the roots x^2-6x+p=0a n d alpha_2,beta_2 be the roots x^2-54 x+q=0dot If alpha_1,beta_1,alpha_2,beta_2 form an increasing G.P., then sum of the digits of the value of (q-p) is ___________.

Let alpha, beta be the roots of x^2-x+p=0 and gamma, delta be the roots of x^2-4x+q=0 such that alpha, beta, gamma, delta are in G.P. and pge2. If a,b,c epsilon {1,2,3,4,5}, let the number of equation of the form ax^2+bx+c=0 which have real roots be r, then the minium value of p q r =

If a, b are the roots of equation x^(2)-3x + p =0 and c, d are the roots of x^(2) - 12x + q = 0 and a, b, c, d are in G.P., then prove that : p : q =1 : 16

If alpha,betaa n dgamma are the roots of x^3+8=0 then find the equation whose roots are alpha^2,beta^2a n dgamma^2 .

Let alpha and beta be the roots of x^2-6x-2=0 with alpha>beta if a_n=alpha^n-beta^n for n>=1 then the value of (a_10 - 2a_8)/(2a_9)

If alpha,beta are roots of x^2+p x+1=0a n dgamma,delta are the roots of x^2+q x+1=0 , then prove that q^2-p^2=(alpha-gamma)(beta-gamma)(alpha+delta)(beta+delta) .

OBJECTIVE RD SHARMA ENGLISH-QUADRATIC EXPRESSIONS AND EQUATIONS -Section I - Solved Mcqs
  1. The number of values of the pair (a, b) for which a(x+1)^2 + b(-x^2 – ...

    Text Solution

    |

  2. If b gt a, then the equation (x-a)(x-b)-1=0 has (a) Both roots in (a...

    Text Solution

    |

  3. Let alphaa n dbeta be the roots of x^2-x+p=0a n dgammaa n ddelta be th...

    Text Solution

    |

  4. Let f(x) = ax^(3) + 5x^(2) - bx + 1. If f(x) when divied by 2x + 1 lea...

    Text Solution

    |

  5. If a ,b ,c(a b c^2)x^2+3a^2c x+b^2c x-6a^2-a b+2b^2=0 ares rational.

    Text Solution

    |

  6. If a, b, c are in H.P., then the equation a(b-c) x^(2) + b(c-a)x+c(a-b...

    Text Solution

    |

  7. The number of value of k for which [x^2-(k-2)x+k^2]xx""[x^2+k x+(2k-1)...

    Text Solution

    |

  8. If the ratio of the roots of the equation ax^2+bx+c=0 is equal to rati...

    Text Solution

    |

  9. If a, b, c are positive and a = 2b + 3c, then roots of the equation ax...

    Text Solution

    |

  10. If a, b, c in R and the quadratic equation x^2 + (a + b) x + c = ...

    Text Solution

    |

  11. If both roots of the quadratic equation x^(2)-2ax+a^(2)-1=0 lie in (-2...

    Text Solution

    |

  12. If .^(6)C(k) + 2* .^(6)C(k+1) + .^(6)C(k+2) gt .^(8)C(3) then the quad...

    Text Solution

    |

  13. If alpha, beta be the roots of the equation 4x^(2)-16x+c=0, c epsilonR...

    Text Solution

    |

  14. Let f(x) = x^(3) + 3x^(2) + 9x + 6 sin x then roots of the equation (1...

    Text Solution

    |

  15. The number of integral values of a for which x^(2) - (a-1) x+3 = 0 has...

    Text Solution

    |

  16. If 1 lies between the roots of equation y^2 - my +1 = 0 and [x] denote...

    Text Solution

    |

  17. If a ,b ,c ,d are four consecutive terms of an increasing A.P., then t...

    Text Solution

    |

  18. If ax^(2)+bx+c=0, a ne 0, a, b, c in R has distinct real roots in (1,2...

    Text Solution

    |

  19. If the equation ax^(2) + bx + 6 = 0 has real roots, where a in R, b in...

    Text Solution

    |

  20. If a and b are distinct positive real numbers such that a, a(1), a(2),...

    Text Solution

    |