Home
Class 11
MATHS
Let p and q real number such that p!= 0,...

Let p and q real number such that `p!= 0`,`p^3!=q` and `p^3!=-q`. if `alpha` and `beta` are non-zero complex number satisfying `alpha+beta=-p` and `alpha^3+beta^3=q`, then a quadratic equation having `alpha/beta` and `beta/alpha` as its roots is

A

`(p^(3)+q)x^(2)-(p^(3)+2q)x+(p^(3)+q)=0`

B

`(p^(3)+q)x^(2)-(p^(3)-2q)x+(p^(3)+q)=0`

C

`(p^(3)-q)x^(2)-(5p^(3)-2q)x+(p^(3)-q)=0`

D

`(p^(3)-q)x^(2)-(5p^(3)+2q)x+(p^(3)-q)=0`

Text Solution

Verified by Experts

The correct Answer is:
B

We have, `alpha+beta = -p and alpha^(3) + beta^(3) = q`
`therefore" "(alpha+beta)^(3) = alpha^(3)+beta^(3) + 3 alpha beta (alpha + beta)`
`rArr" "-p^(3) = q - 3 alpha beta p`
`rArr" "alpha beta = (p^(3)+q)/(3p)`
`(alpha)/(beta)+(beta)/(alpha)=(alpha^(2)+beta^(2))/(alpha beta)=((alpha+beta)^(2))/(alpha beta)-2=(3p^(3))/(p^(3)+q)-2=(p^(3)-2p)/(p^(3)+q)`
The quadratic equation having `(alpha)/(beta) and (beta)/(alpha)` as its roots is `x^(2)-((alpha)/(beta)+(beta)/(alpha))x + (alpha)/(beta)xx(beta)/(alpha)=0`
`rArr" "x^(2)-((p^(3)-2p)/(p^(3)+q))x+1 = 0`
`rArr" "(p^(3) +q) x^(2) -(p^(3)-2q) x + (p^(3)+q)=0`
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|22 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|138 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|50 Videos
  • PROBABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|45 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|59 Videos

Similar Questions

Explore conceptually related problems

Q. Let p and q real number such that p!= 0 , p^2!=q and p^2!=-q . if alpha and beta are non-zero complex number satisfying alpha+beta=-p and alpha^3+beta^3=q , then a quadratic equation having alpha/beta and beta/alpha as its roots is

Let p and q be real numbers such that p!=0,p^3!=q ,and p^3!=-qdot If alpha and beta are nonzero complex numbers satisfying alpha+beta=-p and alpha^3+beta^3=q , then a quadratic equation having alpha//beta and beta//alpha as its roots is A. (p^3+q)x^2-(p^3+2q)x+(p^3+q)=0 B. (p^3+q)x^2-(p^3-2q)x+(p^3+q)=0 C. (p^3+q)x^2-(5p^3-2q)x+(p^3-q)=0 D. (p^3+q)x^2-(5p^3+2q)x+(p^3+q)=0

If alpha ne beta but alpha^(2)= 5 alpha - 3 and beta ^(2)= 5 beta -3 then the equation having alpha // beta and beta // alpha as its roots is :

If alpha and beta are the roots of a quadratic equation such that alpha+beta=2, alpha^4+beta^4=272 , then the quadratic equation is

If alpha and beta are the zeros of a quadratic polynomial such that alpha+beta=24 and alpha-beta=8 , find a quadratic polynomial having alpha and beta as its zeros.

If alpha != beta but, alpha^(2) = 4alpha - 2 and beta^(2) = 4beta - 2 then the quadratic equation with roots (alpha)/(beta) and (beta)/(alpha) is

Let alpha , beta be two real numbers satisfying the following relations alpha^(2)+beta^(2)=5 , 3(alpha^(5)+beta^(5))=11(alpha^(3)+beta^(3)) Quadratic equation having roots alpha and beta is

If alpha and beta are the roots of the quadratic equation x^(2) + px + q = 0 , then form the quadratic equation whose roots are alpha + (1)/(beta), beta + (1)/(alpha)

If alpha+beta=3 and a^(3)+beta^(3) = 7 , then alpha and beta are the roots of the equation

If alphaandbeta be the roots of the quadratic equation x^(2)+px+q=0 , then find the quadratic equation whose roots are (alpha-beta)^(2)and(alpha+beta)^(2) .

OBJECTIVE RD SHARMA ENGLISH-QUADRATIC EXPRESSIONS AND EQUATIONS -Section I - Solved Mcqs
  1. If alpha, beta are roots ................

    Text Solution

    |

  2. If alpha,beta are the roots of the equation lamda(x^(2)-x)+x+5=0 and i...

    Text Solution

    |

  3. If a in R and the equation (a-2) (x-[x])^(2) + 2(x-[x]) + a^(2) = 0 (w...

    Text Solution

    |

  4. If all the roots of x^3 + px + q = 0 p,q in R,q != 0 are real, then

    Text Solution

    |

  5. If three distinct real number a,b and c satisfy a^2(a+p)=b^2(b+p)=c^2(...

    Text Solution

    |

  6. Let (sin a) x^(2) + (sin a) x + 1 - cos a = 0. The set of values of a ...

    Text Solution

    |

  7. Let a and b are the roots of the equation x^2-10 xc -11d =0 and those...

    Text Solution

    |

  8. Let p and q real number such that p!= 0,p^3!=q and p^3!=-q. if alpha a...

    Text Solution

    |

  9. Let a, b and c be three real numbers satisfying [a" "b" "c"][{:(1,9,7)...

    Text Solution

    |

  10. The number of distinct real roots of x^4-4x^3+12 x 62+x-1=0i sdot

    Text Solution

    |

  11. The value of b for which the equation x^2+bx-1=0 and x^2+x+b=0 have on...

    Text Solution

    |

  12. Let for a!=a(1)!=0f(x)=ax^(2)+bx+c, g(x)=a(1)x^(2)+b(1)x+c(1) and p(x)...

    Text Solution

    |

  13. Sachin and Rahul attempted to solve a quadratic equation. Sachin made ...

    Text Solution

    |

  14. Let alpha(a) and beta(a) be the roots of the equation ((1+a)^(1/3)-1)x...

    Text Solution

    |

  15. The number of polynomials f(x) with non-negative integer coefficients ...

    Text Solution

    |

  16. If a in R and the equation =-3(x-[x])^(2)+2(x-[x])+a^(2)=0 (where [x...

    Text Solution

    |

  17. if alpha, beta , ne 0 " and " f(n) =alpha^(n)+beta^(n) " and " |{:(...

    Text Solution

    |

  18. e^(|sin x|)+e^(-|sin x|)+4a=0 will have exactly four different solutio...

    Text Solution

    |

  19. The sum of all real values of x satisfying the equation (x^(2) - 5...

    Text Solution

    |

  20. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |