Home
Class 11
MATHS
if alpha, beta , ne 0 " and " f(n) =alp...

if `alpha, beta , ne 0 " and " f(n) =alpha^(n)+beta^(n)`
`" and " |{:(3,,1+f(1),,1+f(2)),(1+f(1),,1+f(2),,1+f(3)),(1+f(2),,1+f(3),,1+f(4)):}|`
`=k(1-alpha)^(2)(1-beta)^(2)(alpha-beta)^(2)` then k is equal to

A

1

B

-1

C

`alpha beta`

D

`(1)/(alpha beta)`

Text Solution

Verified by Experts

The correct Answer is:
A

We have, `|{:(3,1+f(1),1+f(2)),(1+f(1),1+f(2),1+f(3)),(1+f(2),1+f(3),1+f(4)):}|=k(1-alpha)^(2)(1-beta)^(2)(alpha-beta)^(2)`
`rArr |{:(1+1+1,1+alpha+beta,1+alpha^(2)+beta^(2)),(1+alpha+beta,1+alpha^(2)+beta^(2),1+alpha^(3)+beta^(3)),(1+alpha^(2)+beta^(2),1+alpha^(2)+beta^(3),1+alpha^(2)+beta^(4)):}|=k(1-alpha)^(2)(1-beta)^(2)(alpha-beta)^(2)`
`rArr |{:(1,1,1),(1,alpha,beta),(1,alpha^(2),beta^(2)):}||{:(1,1,1),(1,alpha,beta),(1,alpha^(2),beta^(2)):}|=k(1-alpha)^(2)(1-beta)^(2)(alpha-beta)^(2)`
`rArr |{:(1,1,1),(1,alpha,beta),(1,alpha^(2),beta^(2)):}|^(2)=k(1-alpha)^(2)(1-beta)^(2)(alpha-beta)^(2)`
`rArr |{:(1,1,1),(1,alpha-1,beta-1),(1,alpha^(2)-1,beta^(2)-1):}|^(2)=k(1-alpha)^(2)(1-beta)^(2)(alpha-beta)^(2)`
[Applying `C_(2) rarr C_(2) - C_(1), C_(3) rarr C_(3) - C_(1)` on LHS]
`rArr" "[(alpha-1)(beta^(2)-1)-(beta-1)(alpha^(2)-1)]^(2)=k(1-alpha)^(2)(1-beta)^(2)(alpha-beta)^(2)`
`rArr" "[(1-alpha)^(2)(1-beta)^(2)(1+beta)-(1+alpha)]^(2)=k(1-alpha)^(2)(1-beta)^(2)(alpha-beta)^(2)`
`rArr" "[(1-alpha)^(2)(1-beta)^(2)(alpha-beta)^(2)=k(1-alpha)^(2)(1-beta)^(2)(alpha-beta)^(2)`
`rArr" "k = 1`
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|22 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|138 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|50 Videos
  • PROBABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|45 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|59 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta!=0 , and f(n)""=alpha^n+beta^n and {:|(3, 1+f(1),1+f(2)), (1+f(1),1+f(2),1+f(3)), (1+f(2),1+f(3),1+f(4))|:}=K(1-alpha)^2(1-beta)^2(alpha-beta)^2 , then K is equal to (1) alphabeta (2) 1/(alphabeta) (3) 1 (4) -1

If alpha,beta!=0 , and f(n)""=alpha^n+beta^n and |3 1+f(1)1+f(2)1+f(1)1+f(2)1+f(3)1+f(2)1+f(3)1+f(4)|=K(1-alpha)^2(1-beta)^2(alpha-beta)^2 , then K is equal to (1) alphabeta (2) 1/(alphabeta) (3) 1 (4) -1

If f(x) = alphax^(n) prove that alpha = (f'(1))/n

f(1)=1, n ge 1 f(n+1)=2f(n)+1 then f(n)=

If Delta = |(cos (alpha_(1) - beta_(1)),cos (alpha_(1) - beta_(2)),cos (alpha_(1) - beta_(3))),(cos (alpha_(2) - beta_(1)),cos (alpha_(2) - beta_(2)),cos (alpha_(2) - beta_(3))),(cos (alpha_(3) - beta_(1)),cos (alpha_(3) - beta_(2)),cos (alpha_(3) - beta_(3)))|" then " Delta equals

Let f(n)=2cosn xAAn in N , then f(1)f(n+1)-f(n) is equal to f(n+3) (b) f(n+2) f(n+1)f(2) (d) f(n+2)f(2)

If alpha and beta are roots of equation x^2 +px +q = 0 and f(n) = alpha^n+beta^n , then (i) f(n+1)+pf(n) -qf(n-1)=0 (ii) f(n+1)-pf(n) +qf(n-1)=0 (iii ) f(n+1)+pf(n) +qf(n-1)=0 (iv) f(n+1)-pf(n) -qf(n-1)=0

Let f(x) be a differentiable function and f(alpha)=f(beta)=0(alpha< beta), then the interval (alpha,beta)

Let f(n)=2cosn xAAn in N , then f(1)f(n+1)-f(n) is equal to (a) f(n+3) (b) f(n+2) (c) f(n+1)f(2) (d) f(n+2)f(2)

If alpha, beta be the roots of ax^(2)+bx+c=0(a, b, c in R), (c )/(a)lt 1 and b^(2)-4ac lt 0, f(n)= sum_(r=1)^(n)|alpha|^(r )+|beta|^(r ) , then lim_(n to oo)f(n) is equal to

OBJECTIVE RD SHARMA ENGLISH-QUADRATIC EXPRESSIONS AND EQUATIONS -Section I - Solved Mcqs
  1. If alpha, beta are roots ................

    Text Solution

    |

  2. If alpha,beta are the roots of the equation lamda(x^(2)-x)+x+5=0 and i...

    Text Solution

    |

  3. If a in R and the equation (a-2) (x-[x])^(2) + 2(x-[x]) + a^(2) = 0 (w...

    Text Solution

    |

  4. If all the roots of x^3 + px + q = 0 p,q in R,q != 0 are real, then

    Text Solution

    |

  5. If three distinct real number a,b and c satisfy a^2(a+p)=b^2(b+p)=c^2(...

    Text Solution

    |

  6. Let (sin a) x^(2) + (sin a) x + 1 - cos a = 0. The set of values of a ...

    Text Solution

    |

  7. Let a and b are the roots of the equation x^2-10 xc -11d =0 and those...

    Text Solution

    |

  8. Let p and q real number such that p!= 0,p^3!=q and p^3!=-q. if alpha a...

    Text Solution

    |

  9. Let a, b and c be three real numbers satisfying [a" "b" "c"][{:(1,9,7)...

    Text Solution

    |

  10. The number of distinct real roots of x^4-4x^3+12 x 62+x-1=0i sdot

    Text Solution

    |

  11. The value of b for which the equation x^2+bx-1=0 and x^2+x+b=0 have on...

    Text Solution

    |

  12. Let for a!=a(1)!=0f(x)=ax^(2)+bx+c, g(x)=a(1)x^(2)+b(1)x+c(1) and p(x)...

    Text Solution

    |

  13. Sachin and Rahul attempted to solve a quadratic equation. Sachin made ...

    Text Solution

    |

  14. Let alpha(a) and beta(a) be the roots of the equation ((1+a)^(1/3)-1)x...

    Text Solution

    |

  15. The number of polynomials f(x) with non-negative integer coefficients ...

    Text Solution

    |

  16. If a in R and the equation =-3(x-[x])^(2)+2(x-[x])+a^(2)=0 (where [x...

    Text Solution

    |

  17. if alpha, beta , ne 0 " and " f(n) =alpha^(n)+beta^(n) " and " |{:(...

    Text Solution

    |

  18. e^(|sin x|)+e^(-|sin x|)+4a=0 will have exactly four different solutio...

    Text Solution

    |

  19. The sum of all real values of x satisfying the equation (x^(2) - 5...

    Text Solution

    |

  20. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |