Home
Class 11
MATHS
|[1,cos(alpha-beta), cos alpha] , [cos(a...

`|[1,cos(alpha-beta), cos alpha] , [cos(alpha-beta),1,cos beta] , [cos alpha, cos beta, 1]|`

A

`sin (alpha + beta)`

B

`sin alpha sin beta`

C

`1 + cos (alpha + beta)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} 1 & \cos(\alpha - \beta) & \cos \alpha \\ \cos(\alpha - \beta) & 1 & \cos \beta \\ \cos \alpha & \cos \beta & 1 \end{vmatrix} \] we will use properties of determinants and trigonometric identities. ### Step 1: Rewrite \(\cos(\alpha - \beta)\) Using the cosine subtraction formula, we can express \(\cos(\alpha - \beta)\) as: \[ \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \] Now, substituting this into the determinant gives us: \[ D = \begin{vmatrix} 1 & \cos \alpha \cos \beta + \sin \alpha \sin \beta & \cos \alpha \\ \cos \alpha \cos \beta + \sin \alpha \sin \beta & 1 & \cos \beta \\ \cos \alpha & \cos \beta & 1 \end{vmatrix} \] ### Step 2: Apply Column Operations We will perform column operations to simplify the determinant. Let's modify column 1 and column 2: - Replace column 1 with \(C_1 - \cos \alpha C_3\) - Replace column 2 with \(C_2 - \cos \beta C_3\) This gives us: \[ D = \begin{vmatrix} 1 - \cos^2 \alpha & \sin \alpha \sin \beta & \cos \alpha \\ \sin \alpha \sin \beta & 1 - \cos^2 \beta & \cos \beta \\ 0 & 0 & 1 \end{vmatrix} \] ### Step 3: Simplify the Determinant Using the identity \(1 - \cos^2 \theta = \sin^2 \theta\), we can rewrite the determinant as: \[ D = \begin{vmatrix} \sin^2 \alpha & \sin \alpha \sin \beta & \cos \alpha \\ \sin \alpha \sin \beta & \sin^2 \beta & \cos \beta \\ 0 & 0 & 1 \end{vmatrix} \] ### Step 4: Expand the Determinant We can expand the determinant along the third row: \[ D = 1 \cdot \begin{vmatrix} \sin^2 \alpha & \sin \alpha \sin \beta \\ \sin \alpha \sin \beta & \sin^2 \beta \end{vmatrix} \] Calculating this 2x2 determinant: \[ = \sin^2 \alpha \cdot \sin^2 \beta - (\sin \alpha \sin \beta)(\sin \alpha \sin \beta) = \sin^2 \alpha \sin^2 \beta - \sin^2 \alpha \sin^2 \beta = 0 \] ### Conclusion Thus, the value of the determinant \(D\) is: \[ D = 0 \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|50 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|22 Videos
  • PROBABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|45 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|59 Videos

Similar Questions

Explore conceptually related problems

f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta cos(alpha+beta) is

Let f(alpha, beta) = =|(cos (alpha + beta), -sin (alpha + beta), cos 2beta),(sin alpha, cos alpha, sin beta),(-cos alpha, sin alpha, cos beta)| if i =int_(-pi//2)^(pi//2) cos ^(2)beta(f(0,beta)+f(0,(pi)/(2)-beta))dbeta then i is

Let f(alpha, beta) =|(cos (alpha + beta), -sin (alpha + beta), cos 2beta),(sin alpha, cos alpha, sin beta),(-cos alpha, sin alpha, cos beta)| The value of l=int_(0)^(pi//2)e^(beta)(f(0,0)+f((pi)/(2),beta)+f((3pi)/(2),(pi)/(2)-beta))dbeta is

The value of the determinant Delta = |(cos (alpha + beta),- sin (alpha + beta),cos 2 beta),(sin alpha,cos alpha,sin beta),(- cos alpha,sin alpha,- cos beta)| , is

Evaluate |{:(cos alpha cos beta,,cos alphasinbeta,,-sinalpha),(-sinbeta,,cos beta,,0),(sinalpha cos beta,,sinalphasinbeta,,cos alpha):}|

If alpha,beta "and" gamma are real number without expanding at any stage prove that |{:(1,cos(beta-alpha),cos(gamma-alpha)),(cos(alpha-beta),1,cos(gamma-beta)),(cos(alpha-gamma),cos(beta-gamma),1):}| =0.

Evaluate : |{:( 0, sin alpha , - cos alpha ), ( - sin alpha , 0 , sin beta) , (cos alpha , -sin beta , 0):}|

If |{:(1,cos alpha, cos beta),(cos alpha, 1 , cos gamma ),(cos beta, cos gamma , 1):}|=|{:(0,cos alpha, cos beta),(cos alpha , 0 , cos gamma),(cos beta, cos gamma, 0):}| then the value of cos^2 alpha + cos^2 beta + cos^2 gamma is : (a) 1 (b) 1/2 (c) 3/8 (d) 9/4

If alpha+beta= 60^0 , prove that cos^2 alpha + cos^2 beta - cosalpha cos beta = 3/4 .

Under rotation of axes through theta , x cosalpha + ysinalpha=P changes to Xcos beta + Y sin beta=P then . (a) cos beta = cos (alpha - theta) (b) cos alpha= cos( beta - theta) (c) sin beta = sin (alpha - theta) (d) sin alpha = sin ( beta - theta)

OBJECTIVE RD SHARMA ENGLISH-QUADRATIC EXPRESSIONS AND EQUATIONS -Exercise
  1. The graph of the function y=16x^2+8(a+5)x-7a-5 is strictly above the x...

    Text Solution

    |

  2. Solve for x :(5+2sqrt(6))^(x^2-3)+(5-2sqrt(6))^(x^2-3)=10.

    Text Solution

    |

  3. The number of real roots of the equation 2x^(4) + 5x^(2) + 3 = 0, is

    Text Solution

    |

  4. If x, a, b, c are real and (x-a+b)^(2)+(x-b+c)^(2)=0, then a, b, c are...

    Text Solution

    |

  5. If the roots of the equation (a^2+b^2)x^2-2b(a+c)x+(b^2+c^2)=0 are e...

    Text Solution

    |

  6. If a, b,c are all positive and in HP, then the roots of ax^2 +2bx +c=0...

    Text Solution

    |

  7. If the equation ax^(2)+2bx-3c=0 has no real roots and ((3c)/(4))lta+b,...

    Text Solution

    |

  8. If the roots of the equation x^2+2a x+b=0 are real and distinct and th...

    Text Solution

    |

  9. |[1,cos(alpha-beta), cos alpha] , [cos(alpha-beta),1,cos beta] , [cos ...

    Text Solution

    |

  10. Let alpha "and " beta be the roots of the equation ax^(2)+bx+c=0. Let ...

    Text Solution

    |

  11. ifa=cos(2pi//7)+isin(2pi//7) , then find the quadratic equation whose ...

    Text Solution

    |

  12. The integral value of for which the root of the equation m x^2+(2m-1)x...

    Text Solution

    |

  13. If (1+k) tan^(2) x - 4 tan x-1 + k = 0 has real roots, then which one ...

    Text Solution

    |

  14. If the sum of squares of roots of equation x^(2)-(sin alpha-2)x-(1+sin...

    Text Solution

    |

  15. p, q, r and s are integers. If the A.M. of the roots of x^(2) - px + q...

    Text Solution

    |

  16. If alpha, beta, gamma be the roots of x^(3) + a^(3) = 0 (a in R), then...

    Text Solution

    |

  17. If alpha,beta re the roots of a x^2+c=b x , then the equation (a+c y)^...

    Text Solution

    |

  18. If the equations 2x^(2)-7x+1=0 and ax^(2)+bx+2=0 have a common root, t...

    Text Solution

    |

  19. The common roots of the equation x^(3) + 2x^(2) + 2x + 1 = 0 and 1+ x^...

    Text Solution

    |

  20. If f(x) = sum(k=2)^(n) (x-(1)/(k-1))(x-(1)/(k)), then the product of r...

    Text Solution

    |