Home
Class 11
MATHS
If alpha, beta are the roots of the equa...

If `alpha, beta` are the roots of the equation `ax^2 + bx +c=0` then the value of `(1+alpha+alpha^2)(1+beta+beta^2)` is

A

0

B

positive

C

negative

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( (1 + \alpha + \alpha^2)(1 + \beta + \beta^2) \) where \( \alpha \) and \( \beta \) are the roots of the quadratic equation \( ax^2 + bx + c = 0 \), we can follow these steps: ### Step 1: Use Vieta's Formulas From Vieta's formulas, we know: \[ \alpha + \beta = -\frac{b}{a} \quad \text{and} \quad \alpha \beta = \frac{c}{a} \] ### Step 2: Expand the Expression We need to expand the expression \( (1 + \alpha + \alpha^2)(1 + \beta + \beta^2) \): \[ (1 + \alpha + \alpha^2)(1 + \beta + \beta^2) = 1 + \alpha + \alpha^2 + \beta + \beta^2 + \alpha\beta + \alpha^2\beta + \alpha\beta^2 + \alpha^2\beta^2 \] ### Step 3: Group Terms We can group the terms as follows: \[ = 1 + (\alpha + \beta) + (\alpha^2 + \beta^2) + \alpha\beta + \alpha\beta(\alpha + \beta) + \alpha^2\beta^2 \] ### Step 4: Substitute Known Values Now, we can substitute the known values from Vieta's formulas: - \( \alpha + \beta = -\frac{b}{a} \) - \( \alpha \beta = \frac{c}{a} \) To find \( \alpha^2 + \beta^2 \), we use the identity: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \] Substituting the values: \[ \alpha^2 + \beta^2 = \left(-\frac{b}{a}\right)^2 - 2\left(\frac{c}{a}\right) = \frac{b^2}{a^2} - \frac{2c}{a} \] ### Step 5: Substitute Everything Back Now substituting everything back into the expression: \[ 1 + \left(-\frac{b}{a}\right) + \left(\frac{b^2}{a^2} - \frac{2c}{a}\right) + \frac{c}{a} + \frac{c}{a}\left(-\frac{b}{a}\right) + \left(\frac{c}{a}\right)^2 \] ### Step 6: Simplify the Expression Combining all the terms: \[ = 1 - \frac{b}{a} + \frac{b^2}{a^2} - \frac{2c}{a} + \frac{c}{a} - \frac{bc}{a^2} + \frac{c^2}{a^2} \] \[ = 1 - \frac{b}{a} - \frac{c}{a} + \frac{b^2 - bc + c^2}{a^2} \] ### Step 7: Final Expression The final expression becomes: \[ = \frac{a^2 - ab - ac + b^2 - bc + c^2}{a^2} \] ### Conclusion Thus, the value of \( (1 + \alpha + \alpha^2)(1 + \beta + \beta^2) \) is: \[ \frac{a^2 - ab - ac + b^2 - bc + c^2}{a^2} \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|138 Videos
  • PROBABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|45 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|59 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of the quadratic equation ax^(2)+bx+1 , then the value of 2alpha^(2)beta^(2) is

If alpha and beta are the roots of the equation x^2+sqrt(alpha)x+beta=0 then the values of alpha and beta are -

If alpha,beta are the roots of the equation x^(2)+x+1=0 , find the value of alpha^(3)-beta^(3) .

If alpha and beta are the roots of the quadratic equation px^(2)+qx+1 , Then the value of alphabeta+alpha^(2)beta^(2) is

If alpha,beta are the roots of the equation x^2-4x+1=0, then Find the value of: 1- alpha^2+beta^2 , 2- alpha^3+beta^3 , 3- |alpha-beta| , 4- 1/alpha+1/beta

If alpha and beta are the roots of the quadratic equation ax^(2)+bx+1 , then the value of (1)/(alpha beta)+(alpha+beta) is

If alpha and beta are the roots of the quadratic equation ax^(2)+bx+1 , then the value of (1)/(alpha)+(1)/(beta) is

If alpha and beta be the roots of equation x^(2) + 3x + 1 = 0 then the value of ((alpha)/(1 + beta))^(2) + ((beta)/(1 + alpha))^(2) is equal to

If alpha and beta are the roots of the equations x^(2)-2x-1=0 , then what is the value of alpha^(2)beta^(-2)+beta^(2)alpha^(-2)

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

OBJECTIVE RD SHARMA ENGLISH-QUADRATIC EXPRESSIONS AND EQUATIONS -Chapter Test
  1. If secalpha, tan alpha, " are roots of " ax^(2) + bx +c =0 , then

    Text Solution

    |

  2. If the roots of the equation x^(3) + bx^(2) + 3x - 1 = 0 form a non-de...

    Text Solution

    |

  3. Let [x] denote the greatest integer less than or equal to x. Then, int...

    Text Solution

    |

  4. the number of non-zero solutions of the equation x^2-5x-(sgn x)6=0 is.

    Text Solution

    |

  5. Find the value of a for which one root of the quadratic equation (a^2-...

    Text Solution

    |

  6. If alpha, beta, gamma are the roots of the equation x^(3) + ax^(2) + b...

    Text Solution

    |

  7. If alpha,beta and gamma are the roots of x^3+qx + r = 0 thensumalpha/(...

    Text Solution

    |

  8. If alpha, beta are the roots of the equation ax^2 + bx +c=0 then the v...

    Text Solution

    |

  9. If alpha,beta are roots of x^2+-p x+1=0a n dgamma,delta are the roots ...

    Text Solution

    |

  10. The maximum number of real roots of the equation x^(2n) -1 = 0, is

    Text Solution

    |

  11. The integral value of k for which the roots of the equation (x-2)x^(...

    Text Solution

    |

  12. If x^(2//3) -7 x^(1//3) + 10 = 0, then the set of values of x, is

    Text Solution

    |

  13. If x^2+2ax+10-3a gt0 for all x in R then

    Text Solution

    |

  14. If the difference between the corresponding roots of x^(2)+ax+b=0and x...

    Text Solution

    |

  15. Product of real roots of the equation t^2x^2+|x|+9=0 a. is always +ve...

    Text Solution

    |

  16. Find the value of a for which the sum of the squares of the roots of t...

    Text Solution

    |

  17. If x^(2)+ax+10=0and x^(2)+bx-10=0 have common root, then a^(2)-b^(2) i...

    Text Solution

    |

  18. If x^2+p x+q=0 is the quadratic equation whose roots are a-2a n d b-2 ...

    Text Solution

    |

  19. If alpha and beta are the roots of the equation x^(2)-ax+b=0and A(n)=a...

    Text Solution

    |

  20. If the equation ax^(2)+bx+c=0(agt0) has two roots alpha and beta such ...

    Text Solution

    |