Home
Class 12
MATHS
Let f(x)={{:(,(tanx-cotx)/(x-(pi)/(4)),x...

Let f(x)=`{{:(,(tanx-cotx)/(x-(pi)/(4)),x ne (pi)/(4)),(,a,x=(pi)/(4)):}`
The value of a so that f(x) is a continous at `x=pi//4` is.

A

2

B

4

C

3

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( a \) so that the function \[ f(x) = \begin{cases} \frac{\tan x - \cot x}{x - \frac{\pi}{4}} & \text{if } x \neq \frac{\pi}{4} \\ a & \text{if } x = \frac{\pi}{4} \end{cases} \] is continuous at \( x = \frac{\pi}{4} \), we need to ensure that \[ \lim_{x \to \frac{\pi}{4}} f(x) = f\left(\frac{\pi}{4}\right) = a. \] ### Step 1: Calculate the limit as \( x \) approaches \( \frac{\pi}{4} \) We need to compute \[ \lim_{x \to \frac{\pi}{4}} \frac{\tan x - \cot x}{x - \frac{\pi}{4}}. \] ### Step 2: Rewrite \( \tan x \) and \( \cot x \) Using the definitions of tangent and cotangent, we have: \[ \tan x = \frac{\sin x}{\cos x} \quad \text{and} \quad \cot x = \frac{\cos x}{\sin x}. \] Thus, \[ \tan x - \cot x = \frac{\sin x}{\cos x} - \frac{\cos x}{\sin x} = \frac{\sin^2 x - \cos^2 x}{\sin x \cos x}. \] ### Step 3: Substitute into the limit Now substituting this into the limit gives: \[ \lim_{x \to \frac{\pi}{4}} \frac{\frac{\sin^2 x - \cos^2 x}{\sin x \cos x}}{x - \frac{\pi}{4}} = \lim_{x \to \frac{\pi}{4}} \frac{\sin^2 x - \cos^2 x}{(x - \frac{\pi}{4}) \sin x \cos x}. \] ### Step 4: Factor the numerator We can factor the numerator using the identity \( \sin^2 x - \cos^2 x = -\cos(2x) \): \[ \lim_{x \to \frac{\pi}{4}} \frac{-\cos(2x)}{(x - \frac{\pi}{4}) \sin x \cos x}. \] ### Step 5: Apply L'Hôpital's Rule Since both the numerator and denominator approach 0 as \( x \to \frac{\pi}{4} \), we can apply L'Hôpital's Rule: 1. Differentiate the numerator: \( \frac{d}{dx}(-\cos(2x)) = 2\sin(2x) \). 2. Differentiate the denominator: Using the product rule on \( (x - \frac{\pi}{4}) \sin x \cos x \). ### Step 6: Evaluate the limit After applying L'Hôpital's Rule, we can evaluate the limit again. However, to simplify the calculations, we can also use the Taylor series expansion around \( x = \frac{\pi}{4} \) for \( \sin x \) and \( \cos x \) to find that: \[ \sin x \approx \frac{1}{\sqrt{2}}, \quad \cos x \approx \frac{1}{\sqrt{2}} \quad \text{at } x = \frac{\pi}{4}. \] Thus, substituting back into the limit: \[ \lim_{x \to \frac{\pi}{4}} \frac{-\cos(2(\frac{\pi}{4}))}{(x - \frac{\pi}{4}) \cdot \frac{1}{2}} = \lim_{x \to \frac{\pi}{4}} \frac{-0}{(x - \frac{\pi}{4}) \cdot \frac{1}{2}} = 0. \] ### Step 7: Set the limit equal to \( a \) To ensure continuity at \( x = \frac{\pi}{4} \): \[ a = \lim_{x \to \frac{\pi}{4}} f(x) = 0. \] Thus, the value of \( a \) that makes \( f(x) \) continuous at \( x = \frac{\pi}{4} \) is: \[ \boxed{0}. \]

To find the value of \( a \) so that the function \[ f(x) = \begin{cases} \frac{\tan x - \cot x}{x - \frac{\pi}{4}} & \text{if } x \neq \frac{\pi}{4} \\ a & \text{if } x = \frac{\pi}{4} \end{cases} \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

Let f (x)= {{:((1- tan x)/(4x-pi), x ne (pi)/(4)),( lamda, x =(pi)/(4)):}, x in [0, (pi)/(2)), If f (x) is continuous in [0, (pi)/(2)) then lamda is equal to:

If f(x)={{:((1-tanx)/(4x-pi)",",x ne(pi)/(4)),(k ",",x=(pi)/(4)):} is continuous at x=(pi)/(4) then the value of k is

If f(x)=(sqrt(2)cosx-1)/(cotx-1) , x!=pi/4 . Find the value of f(pi/4) so that f(x) becomes continuous at x=pi//4 .

If f(x)={{:(tan((pi)/(4)-x)/(cot2x)",",x ne(pi)/(4)),(k",",x=(pi)/(4)):} is continuous at x=(pi)/(4) , then the value of k is

Consider the function f(x)=(sin 2x)^(tan^(2)2x), x in (pi)/(4) . The value of f((pi)/(4)) such that f is continuous at x=(pi)/(4) is

If f(x)=(sqrt(2)cosx-1)/(cotx-1),x!=pi/4dot Find the value of f(pi/4) so that f(x) becomes continuous at x=pi/4dot

If f(x)={{:((1-sqrt2sinx)/(pi-4x)",",ifxne(pi)/(4)),(a",",if x=(pi)/(4)):} in continuous at (pi)/(4) , then a is equal to :

Let f(0,pi) to R be defined as f(x)={{:(,(1-sinx)/((pi-2x)^(2)).(In sin x)/((In(1+pi^(2)-4pix+4x^(2)))),x ne (pi)/(2)),(,k,x=(pi)/(2)):} If a continuous at x=(pi)/(2) , then the value of 8sqrt|k|,is

Let f(x)=(tan(pi/4-x))/(cot2x),x!=pi/4 . The value which should be assigned to f(x) at x=pi/4, so that it is continuous everywhere is (a) 1 (b) 1/2 (c) 2 (d) none of these

Let f(x)=(tan(pi/4-x))/(cot2x),x!=pi/4 . The value which should be assigned to f(x) at x=pi/4, so that it is continuous everywhere is 1 (b) 1/2 (c) 2 (d) none of these

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Exercise
  1. Let f(x)={{:(,(tanx-cotx)/(x-(pi)/(4)),x ne (pi)/(4)),(,a,x=(pi)/(4)):...

    Text Solution

    |

  2. The function f(x) = (4-x^(2))/(4x-x^(3)) is discontinuous at

    Text Solution

    |

  3. Let f(x)=|x| and g(x)=|x^3| , then (a).f(x) and g(x) both are continuo...

    Text Solution

    |

  4. The function f(x)=sin^(-1)(cosx) is discontinuous at x=0 (b) continuou...

    Text Solution

    |

  5. The set of points where the function f(x)=x|x| is differentiable is...

    Text Solution

    |

  6. On the interval I = [-2, 2], if the function f(x) = {{:((x+1)e^(-((1)/...

    Text Solution

    |

  7. If f(x)={{:(,(|x+2|)/(tan^(-1)(x+2)),x ne -2),(,2, x=-2):}, then f(x) ...

    Text Solution

    |

  8. Let f(x)=(x+|x|)|x| . Then, for all x f is continuous

    Text Solution

    |

  9. The set of all points where the function f(x)=sqrt(1-e^(-x^2)) is di...

    Text Solution

    |

  10. The function f(x)=e^(-|x|) is continuous everywhere but not differe...

    Text Solution

    |

  11. The function f(x)=[cos x] is

    Text Solution

    |

  12. If f(x)=sqrt(1-sqrt(1-x^2)) , then f(x) is (a) continuous on [-1, 1] ...

    Text Solution

    |

  13. If f(x) = sin ^(-1)((2x)/(1 + x^(2))) then f (x) is differentiable in ...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. If f(x)=|x-a|varphi(x), where varphi(x) is continuous function, then f...

    Text Solution

    |

  16. If f(x)=x^2+(x^2)/(1+x^2)+(x^2)/((1+x^2)^2)+. . . . +(x^2)/((1+x^2)^n)...

    Text Solution

    |

  17. If f(x)= | log10x| then at x=1.

    Text Solution

    |

  18. If f(x)=|log(e) x|,then

    Text Solution

    |

  19. If f(x)=|log(e)|x||," then "f'(x) equals

    Text Solution

    |

  20. Let f(x)={1/(|x|)\ \ \ \ \ for\ |x|geq1a x^2+b\ \ \ \ \ \ \ \ for\ |x|...

    Text Solution

    |

  21. Let h(x)="min "{x,x^(2)} for every real number of x. Then, which one o...

    Text Solution

    |