Home
Class 12
MATHS
Let a , b in R,(a in 0). If the funtion ...

Let `a , b in R,(a in 0)`. If the funtion f defined as
`f(x)={{:(,(2x^(2))/(a),0 le x lt 1),(,a,1 le x lt sqrt2),(,(2b^(2)-4b)/(x^(3)),sqrt2lt x lt oo):}` is a continous in `[0,oo)`. Then, (a,b)=

A

`(sqrt2,1-sqrt3)`

B

`(-sqrt2,1-sqrt3)`

C

`(sqrt2,-1+sqrt3)`

D

`(-sqrt2,1+sqrt3)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( a \) and \( b \) such that the function \( f \) is continuous on the interval \([0, \infty)\), we need to ensure continuity at the points where the definition of the function changes, specifically at \( x = 1 \) and \( x = \sqrt{2} \). The function \( f(x) \) is defined as: \[ f(x) = \begin{cases} \frac{2x^2}{a} & \text{for } 0 \leq x < 1 \\ a & \text{for } 1 \leq x < \sqrt{2} \\ \frac{2b^2 - 4b}{x^3} & \text{for } \sqrt{2} < x < \infty \end{cases} \] ### Step 1: Ensure continuity at \( x = 1 \) We need to check the left-hand limit (LHL) and right-hand limit (RHL) at \( x = 1 \): 1. **LHL at \( x = 1 \)**: \[ \lim_{x \to 1^-} f(x) = \frac{2(1)^2}{a} = \frac{2}{a} \] 2. **RHL at \( x = 1 \)**: \[ \lim_{x \to 1^+} f(x) = a \] Setting LHL equal to RHL for continuity: \[ \frac{2}{a} = a \] Multiplying both sides by \( a \) (since \( a \neq 0 \)): \[ 2 = a^2 \implies a = \sqrt{2} \text{ or } a = -\sqrt{2} \] ### Step 2: Ensure continuity at \( x = \sqrt{2} \) Next, we check the limits at \( x = \sqrt{2} \): 1. **LHL at \( x = \sqrt{2} \)**: \[ \lim_{x \to \sqrt{2}^-} f(x) = a \] 2. **RHL at \( x = \sqrt{2} \)**: \[ \lim_{x \to \sqrt{2}^+} f(x) = \frac{2b^2 - 4b}{(\sqrt{2})^3} = \frac{2b^2 - 4b}{2\sqrt{2}} = \frac{b^2 - 2b}{\sqrt{2}} \] Setting LHL equal to RHL for continuity: \[ a = \frac{b^2 - 2b}{\sqrt{2}} \] ### Step 3: Solve for \( b \) Now we substitute the values of \( a \) we found earlier into the equation \( a = \frac{b^2 - 2b}{\sqrt{2}} \): 1. **For \( a = \sqrt{2} \)**: \[ \sqrt{2} = \frac{b^2 - 2b}{\sqrt{2}} \] Multiplying both sides by \( \sqrt{2} \): \[ 2 = b^2 - 2b \] Rearranging gives: \[ b^2 - 2b - 2 = 0 \] Using the quadratic formula: \[ b = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1} = \frac{2 \pm \sqrt{4 + 8}}{2} = \frac{2 \pm \sqrt{12}}{2} = 1 \pm \sqrt{3} \] 2. **For \( a = -\sqrt{2} \)**: \[ -\sqrt{2} = \frac{b^2 - 2b}{\sqrt{2}} \] Multiplying both sides by \( \sqrt{2} \): \[ -2 = b^2 - 2b \] Rearranging gives: \[ b^2 - 2b + 2 = 0 \] The discriminant is negative (\( (-2)^2 - 4 \cdot 1 \cdot 2 < 0 \)), indicating no real solutions for \( b \). ### Conclusion Thus, the only valid pairs \((a, b)\) are: \[ (a, b) = \left(\sqrt{2}, 1 + \sqrt{3}\right) \text{ and } \left(\sqrt{2}, 1 - \sqrt{3}\right) \] ### Final Answer The ordered pairs are: \[ (a, b) = \left(\sqrt{2}, 1 + \sqrt{3}\right) \text{ and } \left(\sqrt{2}, 1 - \sqrt{3}\right) \]

To determine the values of \( a \) and \( b \) such that the function \( f \) is continuous on the interval \([0, \infty)\), we need to ensure continuity at the points where the definition of the function changes, specifically at \( x = 1 \) and \( x = \sqrt{2} \). The function \( f(x) \) is defined as: \[ f(x) = \begin{cases} \frac{2x^2}{a} & \text{for } 0 \leq x < 1 \\ ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

The function f(x)={{:(,(x^(2))/(a),0 le x lt 1),(,a,1le x lt sqrt2),(,(2b^(2)-4b)/(x^(2)),sqrt2 le x lt oo):} is a continuous for 0 le x lt oo . Then which of the following statements is correct?

If f(x)={{:(,4,-3lt x lt -1),(,5+x,-1le x lt 0),(,5-x,0 le x lt 2),(,x^(2)+x-3,2 lt x lt 3):} then, f(|x|) is

If a function f(x) is defined as f(x) = {{:(-x",",x lt 0),(x^(2)",",0 le x le 1),(x^(2)-x + 1",",x gt 1):} then

Let f (x) be defined as f (x) ={{:(|x|, 0 le x lt1),(|x-1|+|x-2|, 1 le x lt2),(|x-3|, 2 le x lt 3):} The range of function g (x)= sin (7 (f (x)) is :

Find the inverse of each of the following functions : f(x) = {{:(x"," -oo lt x lt 1),(x^(2)"," 1 le x le 4),(2x"," 4 lt x lt oo):}

Let f(x)={{:(,x^(3)+x^(2)-10x,-1 le x lt 0),(,cos x,0 le x lt pi/2),(,1+sin x,pi/2 le x le pi):}" Then at "x=pi/2 , f(x) has:

Let a function f be defined as f(x) = {:{(x," if " 0 le x lt 1/2),(0," if "x=1/2),(x-1," if" 1/2 lt x le 1):} Establish the existence of Lim_(x to 1/2) f(x) .

Find the value of a ,b if f(x) = {((a e^(1//|x+2|) - 1)/(2-e^(1//|x+2|)),; -3 lt x lt -2), (b,; x = -2), (sin((x^4-16)/(x^5+32)),; -2 lt x lt 0):} is continuous at x = -2.

Which of the following statement is true for the function f(x)={{:(sqrt(x),","x ge 1),(x^(3) ,","0 le x lt 1),((x^(3))/(3)-4x,"," x lt 0):}

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Exercise
  1. Let a , b in R,(a in 0). If the funtion f defined as f(x)={{:(,(2x^(...

    Text Solution

    |

  2. The function f(x) = (4-x^(2))/(4x-x^(3)) is discontinuous at

    Text Solution

    |

  3. Let f(x)=|x| and g(x)=|x^3| , then (a).f(x) and g(x) both are continuo...

    Text Solution

    |

  4. The function f(x)=sin^(-1)(cosx) is discontinuous at x=0 (b) continuou...

    Text Solution

    |

  5. The set of points where the function f(x)=x|x| is differentiable is...

    Text Solution

    |

  6. On the interval I = [-2, 2], if the function f(x) = {{:((x+1)e^(-((1)/...

    Text Solution

    |

  7. If f(x)={{:(,(|x+2|)/(tan^(-1)(x+2)),x ne -2),(,2, x=-2):}, then f(x) ...

    Text Solution

    |

  8. Let f(x)=(x+|x|)|x| . Then, for all x f is continuous

    Text Solution

    |

  9. The set of all points where the function f(x)=sqrt(1-e^(-x^2)) is di...

    Text Solution

    |

  10. The function f(x)=e^(-|x|) is continuous everywhere but not differe...

    Text Solution

    |

  11. The function f(x)=[cos x] is

    Text Solution

    |

  12. If f(x)=sqrt(1-sqrt(1-x^2)) , then f(x) is (a) continuous on [-1, 1] ...

    Text Solution

    |

  13. If f(x) = sin ^(-1)((2x)/(1 + x^(2))) then f (x) is differentiable in ...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. If f(x)=|x-a|varphi(x), where varphi(x) is continuous function, then f...

    Text Solution

    |

  16. If f(x)=x^2+(x^2)/(1+x^2)+(x^2)/((1+x^2)^2)+. . . . +(x^2)/((1+x^2)^n)...

    Text Solution

    |

  17. If f(x)= | log10x| then at x=1.

    Text Solution

    |

  18. If f(x)=|log(e) x|,then

    Text Solution

    |

  19. If f(x)=|log(e)|x||," then "f'(x) equals

    Text Solution

    |

  20. Let f(x)={1/(|x|)\ \ \ \ \ for\ |x|geq1a x^2+b\ \ \ \ \ \ \ \ for\ |x|...

    Text Solution

    |

  21. Let h(x)="min "{x,x^(2)} for every real number of x. Then, which one o...

    Text Solution

    |