Home
Class 12
MATHS
If function f(x) given by f(x)={{:(,(s...

If function f(x) given by
`f(x)={{:(,(sin x)^(1//(pi-2x)),xne pi//2),(,lambda,x=pi//2):}` is continous at `x=(pi)/(2)` then `lambda`=

A

e

B

1

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( \lambda \) such that the function \[ f(x) = \begin{cases} (\sin x)^{\frac{1}{\pi - 2x}} & \text{if } x \neq \frac{\pi}{2} \\ \lambda & \text{if } x = \frac{\pi}{2} \end{cases} \] is continuous at \( x = \frac{\pi}{2} \), we need to ensure that the limit of \( f(x) \) as \( x \) approaches \( \frac{\pi}{2} \) is equal to \( f\left(\frac{\pi}{2}\right) \). ### Step 1: Find \( \lim_{x \to \frac{\pi}{2}} f(x) \) We first need to calculate the limit: \[ \lim_{x \to \frac{\pi}{2}} (\sin x)^{\frac{1}{\pi - 2x}} \] As \( x \) approaches \( \frac{\pi}{2} \), \( \sin x \) approaches \( 1 \). Therefore, we can rewrite the limit as: \[ \lim_{x \to \frac{\pi}{2}} (\sin x)^{\frac{1}{\pi - 2x}} = 1^{\text{something}} = 1 \] However, we need to analyze the exponent \( \frac{1}{\pi - 2x} \) as \( x \) approaches \( \frac{\pi}{2} \). ### Step 2: Analyze the exponent As \( x \to \frac{\pi}{2} \), \( \pi - 2x \) approaches \( 0 \). Thus, we need to evaluate the behavior of \( \frac{1}{\pi - 2x} \): \[ \lim_{x \to \frac{\pi}{2}} \frac{1}{\pi - 2x} = \lim_{x \to \frac{\pi}{2}} \frac{1}{\pi - 2\left(\frac{\pi}{2}\right)} = \lim_{x \to \frac{\pi}{2}} \frac{1}{0} \] This limit approaches \( \infty \) as \( x \) approaches \( \frac{\pi}{2} \) from the left and approaches \( -\infty \) from the right. ### Step 3: Evaluate the limit Now we can evaluate the limit: \[ \lim_{x \to \frac{\pi}{2}^-} (\sin x)^{\frac{1}{\pi - 2x}} \to 1^{+\infty} = 1 \] \[ \lim_{x \to \frac{\pi}{2}^+} (\sin x)^{\frac{1}{\pi - 2x}} \to 1^{-\infty} = 0 \] ### Step 4: Set the limits equal to \( \lambda \) For the function to be continuous at \( x = \frac{\pi}{2} \): \[ \lambda = \lim_{x \to \frac{\pi}{2}} f(x) = 1 \] Thus, we find that \( \lambda = 1 \). ### Conclusion The value of \( \lambda \) such that the function \( f(x) \) is continuous at \( x = \frac{\pi}{2} \) is \[ \lambda = 1 \]

To determine the value of \( \lambda \) such that the function \[ f(x) = \begin{cases} (\sin x)^{\frac{1}{\pi - 2x}} & \text{if } x \neq \frac{\pi}{2} \\ \lambda & \text{if } x = \frac{\pi}{2} \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

Examination the function f(x) given by f(x)={((cosx)/(pi/2-x) ,, x != pi/2),(1 ,, x = pi/2):} ; for continuity at x=pi/2

If f(x)={((sin(cosx)-cosx)/((pi-2x)^2) ,, x!=pi/2),(k ,, x=pi/2):} is continuous at x=pi/2, then k is equal to

If f(x)={((1-sin((3x)/2))/(pi-3x) , x != pi/2),(lambda , x=pi/2)) be continuous at x=pi/3 , then value of lamda is (A) -1 (B) 1 (C) 0 (D) 2

Let f(x)={{:(((1-cosx)/((2pi-x)^(2)))((sin^(2)x)/(log(1+4pi^(2)-4pix+x^(2)))),:,xne2pi),(" "lambda,:,x=2pi):} is continuous at x=2pi , then the value of lambda is equal to

Let f(0,pi) to R be defined as f(x)={{:(,(1-sinx)/((pi-2x)^(2)).(In sin x)/((In(1+pi^(2)-4pix+4x^(2)))),x ne (pi)/(2)),(,k,x=(pi)/(2)):} If a continuous at x=(pi)/(2) , then the value of 8sqrt|k|,is

Find the value of k so that the function f defined by f(x)={(kcosx)/(pi-2x), "if"\ \ x\ !=pi/2" 3,if"\ x=pi/2 is continuous at x=pi/2

If f(x)=(1-sinx)/((pi-2x)^2) ,when x!=pi/2 and f(pi/2)=lambda, the f(x) will be continuous function at x=pi/2 ,where lambda=? (a) 1/8 (b) 1/4 (c) 1/2 (d) none of these

Let f(x)={:{((kcosx)/(pi-2x)',xne(pi)/(2)),(3",",x=(pi)/(2).):} If lim_(xto(pi)/(2))f(x)=f((pi)/(2)), find the value of k.

Find the value of k so that the function f defined by f(x)={(kcosx)/(pi-2x),3\ \ \ ,\ \ \ \ \ \ \ \ \ \ "if"\ \ x\ !=pi/2"if"\ x=pi/2 is continuous at x=pi/2

If f(x)={(((1-sin^(3)x))/(3cos^(2)x)",",x lt (pi)/(2)),(a",",x=(pi)/(2)),((b(1-sinx))/((pi-2x)^(2))",",x gt (pi)/(2)):} is continuous at x=(pi)/(2) , then the value of ((b)/(a))^(5//3) is

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Exercise
  1. If function f(x) given by f(x)={{:(,(sin x)^(1//(pi-2x)),xne pi//2),...

    Text Solution

    |

  2. The function f(x) = (4-x^(2))/(4x-x^(3)) is discontinuous at

    Text Solution

    |

  3. Let f(x)=|x| and g(x)=|x^3| , then (a).f(x) and g(x) both are continuo...

    Text Solution

    |

  4. The function f(x)=sin^(-1)(cosx) is discontinuous at x=0 (b) continuou...

    Text Solution

    |

  5. The set of points where the function f(x)=x|x| is differentiable is...

    Text Solution

    |

  6. On the interval I = [-2, 2], if the function f(x) = {{:((x+1)e^(-((1)/...

    Text Solution

    |

  7. If f(x)={{:(,(|x+2|)/(tan^(-1)(x+2)),x ne -2),(,2, x=-2):}, then f(x) ...

    Text Solution

    |

  8. Let f(x)=(x+|x|)|x| . Then, for all x f is continuous

    Text Solution

    |

  9. The set of all points where the function f(x)=sqrt(1-e^(-x^2)) is di...

    Text Solution

    |

  10. The function f(x)=e^(-|x|) is continuous everywhere but not differe...

    Text Solution

    |

  11. The function f(x)=[cos x] is

    Text Solution

    |

  12. If f(x)=sqrt(1-sqrt(1-x^2)) , then f(x) is (a) continuous on [-1, 1] ...

    Text Solution

    |

  13. If f(x) = sin ^(-1)((2x)/(1 + x^(2))) then f (x) is differentiable in ...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. If f(x)=|x-a|varphi(x), where varphi(x) is continuous function, then f...

    Text Solution

    |

  16. If f(x)=x^2+(x^2)/(1+x^2)+(x^2)/((1+x^2)^2)+. . . . +(x^2)/((1+x^2)^n)...

    Text Solution

    |

  17. If f(x)= | log10x| then at x=1.

    Text Solution

    |

  18. If f(x)=|log(e) x|,then

    Text Solution

    |

  19. If f(x)=|log(e)|x||," then "f'(x) equals

    Text Solution

    |

  20. Let f(x)={1/(|x|)\ \ \ \ \ for\ |x|geq1a x^2+b\ \ \ \ \ \ \ \ for\ |x|...

    Text Solution

    |

  21. Let h(x)="min "{x,x^(2)} for every real number of x. Then, which one o...

    Text Solution

    |