Home
Class 12
MATHS
Let f (x)= (e ^(tan x) -e ^(x) +ln (sec ...

Let `f (x)= (e ^(tan x) -e ^(x) +ln (sec x+ tan x)-x)/(tan x-x)` be a continous function at `x=0.` The value of `f (0)` equals:

A

`(1)/(2)`

B

`(2)/(3)`

C

`(3)/(2)`

D

2

Text Solution

Verified by Experts

The correct Answer is:
C

For f(x) to be continuous at x=0, we must have
`underset(x to 0)lim (e^(tan x)-e^(x)+In (sec x+tan x)-x)/(tan x-x)=f(0)`
`Rightarrow f(0)=underset(x to 0)lim e^(x)((e^(tan x-x)-1))/(tan x-x)+underset(x to 0)lim ("In"(sec x+tan x))/(tan x-x)`
`Rightarrow f(0)=underset(x to 0)lim e^(x)((e^(tan x-x)-1))/(tan x-x)+underset(x to 0)lim (log(secx+tanx)-x)/(x^(3)((tan x-x)/(x^(3))))`
`Rightarrow f(0)=1xxe^(0)+3 underset(x to 0)lim ("In"(sec x+tanx )-x)/(x^(3)) [therefore underset(x to 0)lim (tan x-x)/(x^(3))=(1)/(3)]`
`Rightarrow f(0)=1+3 underset(x to 0)lim (sec x-1)/(3x^(2))" "["By L' Hospital's rule"]`
`Rightarrow f(0)=1+3 underset(x to 0)lim (1-cos x)/(3 cos x.x^(2))`
`Rightarrow f(0)=1+3xx(1)/(3)xx(1)/(2)=(3)/(2)`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

Let f(x) =(e^(tan x)-e^x+ln(secx+tanx)-x)/(tanx-x) be a continuous function at x=0. The value f(0) equals

int sec x ln(sec x+tan x)dx=

Find f'(x) if f(x) = tan x^(tan x)

Find f'(x) if f(x) = tan x^(tan x)

If the function f(x) =(tan(tanx)-sin(sinx))/(tanx-sinx) (x !=0) : is continuous at x=0 ,then find the value of f (0)

if f(x) = tan^(1) x -(1//2) ln x. then

Given f(x)=(1)/(secx - tan x) , prove that f'(x)= sec x (sec x +tan x)

The function f(x)= tan x - x

Let f(x)=(sin x)/(x), x ne 0 . Then f(x) can be continous at x=0, if

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Exercise
  1. Let f (x)= (e ^(tan x) -e ^(x) +ln (sec x+ tan x)-x)/(tan x-x) be a c...

    Text Solution

    |

  2. The function f(x) = (4-x^(2))/(4x-x^(3)) is discontinuous at

    Text Solution

    |

  3. Let f(x)=|x| and g(x)=|x^3| , then (a).f(x) and g(x) both are continuo...

    Text Solution

    |

  4. The function f(x)=sin^(-1)(cosx) is discontinuous at x=0 (b) continuou...

    Text Solution

    |

  5. The set of points where the function f(x)=x|x| is differentiable is...

    Text Solution

    |

  6. On the interval I = [-2, 2], if the function f(x) = {{:((x+1)e^(-((1)/...

    Text Solution

    |

  7. If f(x)={{:(,(|x+2|)/(tan^(-1)(x+2)),x ne -2),(,2, x=-2):}, then f(x) ...

    Text Solution

    |

  8. Let f(x)=(x+|x|)|x| . Then, for all x f is continuous

    Text Solution

    |

  9. The set of all points where the function f(x)=sqrt(1-e^(-x^2)) is di...

    Text Solution

    |

  10. The function f(x)=e^(-|x|) is continuous everywhere but not differe...

    Text Solution

    |

  11. The function f(x)=[cos x] is

    Text Solution

    |

  12. If f(x)=sqrt(1-sqrt(1-x^2)) , then f(x) is (a) continuous on [-1, 1] ...

    Text Solution

    |

  13. If f(x) = sin ^(-1)((2x)/(1 + x^(2))) then f (x) is differentiable in ...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. If f(x)=|x-a|varphi(x), where varphi(x) is continuous function, then f...

    Text Solution

    |

  16. If f(x)=x^2+(x^2)/(1+x^2)+(x^2)/((1+x^2)^2)+. . . . +(x^2)/((1+x^2)^n)...

    Text Solution

    |

  17. If f(x)= | log10x| then at x=1.

    Text Solution

    |

  18. If f(x)=|log(e) x|,then

    Text Solution

    |

  19. If f(x)=|log(e)|x||," then "f'(x) equals

    Text Solution

    |

  20. Let f(x)={1/(|x|)\ \ \ \ \ for\ |x|geq1a x^2+b\ \ \ \ \ \ \ \ for\ |x|...

    Text Solution

    |

  21. Let h(x)="min "{x,x^(2)} for every real number of x. Then, which one o...

    Text Solution

    |