Home
Class 12
MATHS
If f(x)={{:(,x-5 "for "x le 1),(,4x^(2)-...

If f(x)=`{{:(,x-5 "for "x le 1),(,4x^(2)-9"for "1 lt x lt 2"then "f'(2+)),(,3x+4"for "xge2):}`

A

0

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the right-hand derivative of the function \( f(x) \) at \( x = 2 \). The function is defined piecewise as follows: 1. \( f(x) = x - 5 \) for \( x \leq 1 \) 2. \( f(x) = 4x^2 - 9 \) for \( 1 < x < 2 \) 3. \( f(x) = 3x + 4 \) for \( x \geq 2 \) ### Step-by-Step Solution: **Step 1: Identify the relevant piece of the function for \( x = 2 \)** Since we are looking for \( f'(2^+) \), we need to use the piece of the function that applies when \( x \) is greater than or equal to 2. Therefore, we have: \[ f(x) = 3x + 4 \quad \text{for } x \geq 2 \] **Step 2: Calculate \( f(2) \)** We need to find the value of \( f(2) \): \[ f(2) = 3(2) + 4 = 6 + 4 = 10 \] **Step 3: Set up the limit for the derivative** The right-hand derivative \( f'(2^+) \) is defined as: \[ f'(2^+) = \lim_{x \to 2^+} \frac{f(x) - f(2)}{x - 2} \] Substituting the expression for \( f(x) \) when \( x \) is greater than or equal to 2: \[ f'(2^+) = \lim_{x \to 2^+} \frac{(3x + 4) - 10}{x - 2} \] **Step 4: Simplify the expression** Now we simplify the expression inside the limit: \[ f'(2^+) = \lim_{x \to 2^+} \frac{3x + 4 - 10}{x - 2} = \lim_{x \to 2^+} \frac{3x - 6}{x - 2} \] This can be factored as: \[ f'(2^+) = \lim_{x \to 2^+} \frac{3(x - 2)}{x - 2} \] **Step 5: Cancel the common terms** Since \( x \) approaches \( 2 \) from the right, we can cancel \( (x - 2) \) from the numerator and denominator: \[ f'(2^+) = \lim_{x \to 2^+} 3 = 3 \] Thus, we find that: \[ f'(2^+) = 3 \] ### Final Answer: The value of \( f'(2^+) \) is \( 3 \). ---

To solve the problem, we need to find the right-hand derivative of the function \( f(x) \) at \( x = 2 \). The function is defined piecewise as follows: 1. \( f(x) = x - 5 \) for \( x \leq 1 \) 2. \( f(x) = 4x^2 - 9 \) for \( 1 < x < 2 \) 3. \( f(x) = 3x + 4 \) for \( x \geq 2 \) ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

The function f(x) ={{:( 5x-4, " for " 0 lt x le 1) ,( 4x^(2) - 3x, " for" 1 lt x lt 2 ),( 3x + 4 , "for" x ge2):}is

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

The function f(x)= {(5x-4 ", " 0 lt x le 1 ),( 4x^3-3x", " 1 lt x lt 2):}

Given f(x) where ={(x|x|,"for" xle -1),([x+1]+[1-x],"for"-1lt x lt 1 ","),(-x|x|,"for" xge1):} [.] denotes the greatest integer function. If I= int_(-2)^(2) f ( x) dx ,then |3I| =

Given f(x) where ={(x|x|,"for" xle -1),([x+1]+[1-x],"for"-1lt x lt 1 ","),(-x|x|,"for" xge1):} [.] denotes the greatest integer function. If I= int_(-2)^(2) f ( x) dx ,then |3I| =

If f(x) {:{(x^(2)+4," for "x lt 2 ),(x^(3)," for " x gt 2 ):} , find Lim_(x to 2) f(x)

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

If f(x)=(25-x^(4))^(1//4)"for "0 lt x lt sqrt5, "then"f(f((1)/(2)))=

If f(x)={{:(x+3 : x lt 3),(3x^(2)+1:xge3):} , then find int_(2)^(5) f(x) dx .

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Exercise
  1. If f(x)={{:(,x-5 "for "x le 1),(,4x^(2)-9"for "1 lt x lt 2"then "f'(2...

    Text Solution

    |

  2. The function f(x) = (4-x^(2))/(4x-x^(3)) is discontinuous at

    Text Solution

    |

  3. Let f(x)=|x| and g(x)=|x^3| , then (a).f(x) and g(x) both are continuo...

    Text Solution

    |

  4. The function f(x)=sin^(-1)(cosx) is discontinuous at x=0 (b) continuou...

    Text Solution

    |

  5. The set of points where the function f(x)=x|x| is differentiable is...

    Text Solution

    |

  6. On the interval I = [-2, 2], if the function f(x) = {{:((x+1)e^(-((1)/...

    Text Solution

    |

  7. If f(x)={{:(,(|x+2|)/(tan^(-1)(x+2)),x ne -2),(,2, x=-2):}, then f(x) ...

    Text Solution

    |

  8. Let f(x)=(x+|x|)|x| . Then, for all x f is continuous

    Text Solution

    |

  9. The set of all points where the function f(x)=sqrt(1-e^(-x^2)) is di...

    Text Solution

    |

  10. The function f(x)=e^(-|x|) is continuous everywhere but not differe...

    Text Solution

    |

  11. The function f(x)=[cos x] is

    Text Solution

    |

  12. If f(x)=sqrt(1-sqrt(1-x^2)) , then f(x) is (a) continuous on [-1, 1] ...

    Text Solution

    |

  13. If f(x) = sin ^(-1)((2x)/(1 + x^(2))) then f (x) is differentiable in ...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. If f(x)=|x-a|varphi(x), where varphi(x) is continuous function, then f...

    Text Solution

    |

  16. If f(x)=x^2+(x^2)/(1+x^2)+(x^2)/((1+x^2)^2)+. . . . +(x^2)/((1+x^2)^n)...

    Text Solution

    |

  17. If f(x)= | log10x| then at x=1.

    Text Solution

    |

  18. If f(x)=|log(e) x|,then

    Text Solution

    |

  19. If f(x)=|log(e)|x||," then "f'(x) equals

    Text Solution

    |

  20. Let f(x)={1/(|x|)\ \ \ \ \ for\ |x|geq1a x^2+b\ \ \ \ \ \ \ \ for\ |x|...

    Text Solution

    |

  21. Let h(x)="min "{x,x^(2)} for every real number of x. Then, which one o...

    Text Solution

    |