Home
Class 12
MATHS
Let f(x)={{:(,(1)/(|x|),"if "|x| gt 2,"t...

Let `f(x)={{:(,(1)/(|x|),"if "|x| gt 2,"then "f(x)is),(,a+bx^(2), , "if"|x| le2):}` is differentiable at x=-2 for

A

`a=(3)/(4), b=(1)/(6)`

B

`a=(3)/(4), b=(1)/(16)`

C

`a=-(1)/(4), b=(1)/(16)`

D

`a=(1)/(4), b=-(1)/(16)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( a \) and \( b \) such that the function \[ f(x) = \begin{cases} \frac{1}{|x|} & \text{if } |x| > 2 \\ a + bx^2 & \text{if } |x| \leq 2 \end{cases} \] is differentiable at \( x = -2 \), we need to ensure that \( f(x) \) is continuous and differentiable at that point. ### Step 1: Check Continuity at \( x = -2 \) For \( f(x) \) to be continuous at \( x = -2 \), we need: \[ \lim_{x \to -2^-} f(x) = \lim_{x \to -2^+} f(x) = f(-2) \] Calculating \( f(-2) \): Since \( |-2| \leq 2 \), we use the second case: \[ f(-2) = a + b(-2)^2 = a + 4b \] Now, we calculate the left-hand limit: \[ \lim_{x \to -2^-} f(x) = \lim_{x \to -2^-} (a + bx^2) = a + b(-2)^2 = a + 4b \] Next, we calculate the right-hand limit: \[ \lim_{x \to -2^+} f(x) = \lim_{x \to -2^+} \frac{1}{|x|} = \frac{1}{|-2|} = \frac{1}{2} \] Setting the left-hand limit equal to the right-hand limit for continuity: \[ a + 4b = \frac{1}{2} \quad \text{(Equation 1)} \] ### Step 2: Check Differentiability at \( x = -2 \) For \( f(x) \) to be differentiable at \( x = -2 \), we need: \[ \lim_{x \to -2^-} f'(x) = \lim_{x \to -2^+} f'(x) \] Calculating the left-hand derivative: \[ f'(x) = \frac{d}{dx}(a + bx^2) = 2bx \] Thus, \[ \lim_{x \to -2^-} f'(x) = 2b(-2) = -4b \] Now, calculating the right-hand derivative: \[ f'(x) = \frac{d}{dx}\left(\frac{1}{|x|}\right) = -\frac{1}{x^2} \] Thus, \[ \lim_{x \to -2^+} f'(x) = -\frac{1}{(-2)^2} = -\frac{1}{4} \] Setting the left-hand derivative equal to the right-hand derivative: \[ -4b = -\frac{1}{4} \quad \text{(Equation 2)} \] ### Step 3: Solve the Equations From Equation 2: \[ 4b = \frac{1}{4} \implies b = \frac{1}{16} \] Substituting \( b \) back into Equation 1: \[ a + 4\left(\frac{1}{16}\right) = \frac{1}{2} \] This simplifies to: \[ a + \frac{1}{4} = \frac{1}{2} \implies a = \frac{1}{2} - \frac{1}{4} = \frac{1}{4} \] ### Final Values Thus, the values of \( a \) and \( b \) that make \( f(x) \) differentiable at \( x = -2 \) are: \[ a = \frac{1}{4}, \quad b = \frac{1}{16} \]

To determine the values of \( a \) and \( b \) such that the function \[ f(x) = \begin{cases} \frac{1}{|x|} & \text{if } |x| > 2 \\ a + bx^2 & \text{if } |x| \leq 2 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(e^(2x^(3)+x),x gt 0),(ax+b, x le 0):} is differentiable at x = 0, then

Given f(x)={(x^2 xx e^(2(x-1)), 0 le x le 1), (acos(2x-2)+bx^2, 1 lt x le2):} is differentiable at x=1 , then the value of |a - b| is

Show that the function f(x)={:{(1+x ", " x le2","),(5-x", "x gt2):} is not differentiable at x=2

Let f(x) be a function defined by f(x)={{:(,e^(x),x lt 2),(,a+bx,x ge 2):} It f(x) is differentiably for all x in R , then

If f(x)={:{(x^2", "x le 1),( x^2-x+1"," x gt1):} then show that f(x) is not differentiable at x=1 .

Let f(x) = {{:(int_(0)^(x){5+|1-t|}dt",","if",x gt 2),(5x + 1",","if",x le 2):} Test f(x) for continuity and differentiability for all real x.

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at:

If f(x)={{:(,|x|, x le1),(,2-x,x gt 1):} , then fof (x) is equal to

Let f(x)={(1+|x-2|,x!=2),(2,x=2):} then at x=2, f(x) has

If f(x)={{:(,x,x le 1, and f'x(x)),(,x^(2)+bx+c, , x gt 1):} and exists finetely for all x in R , then

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Exercise
  1. Let f(x)={{:(,(1)/(|x|),"if "|x| gt 2,"then "f(x)is),(,a+bx^(2), , "if...

    Text Solution

    |

  2. The function f(x) = (4-x^(2))/(4x-x^(3)) is discontinuous at

    Text Solution

    |

  3. Let f(x)=|x| and g(x)=|x^3| , then (a).f(x) and g(x) both are continuo...

    Text Solution

    |

  4. The function f(x)=sin^(-1)(cosx) is discontinuous at x=0 (b) continuou...

    Text Solution

    |

  5. The set of points where the function f(x)=x|x| is differentiable is...

    Text Solution

    |

  6. On the interval I = [-2, 2], if the function f(x) = {{:((x+1)e^(-((1)/...

    Text Solution

    |

  7. If f(x)={{:(,(|x+2|)/(tan^(-1)(x+2)),x ne -2),(,2, x=-2):}, then f(x) ...

    Text Solution

    |

  8. Let f(x)=(x+|x|)|x| . Then, for all x f is continuous

    Text Solution

    |

  9. The set of all points where the function f(x)=sqrt(1-e^(-x^2)) is di...

    Text Solution

    |

  10. The function f(x)=e^(-|x|) is continuous everywhere but not differe...

    Text Solution

    |

  11. The function f(x)=[cos x] is

    Text Solution

    |

  12. If f(x)=sqrt(1-sqrt(1-x^2)) , then f(x) is (a) continuous on [-1, 1] ...

    Text Solution

    |

  13. If f(x) = sin ^(-1)((2x)/(1 + x^(2))) then f (x) is differentiable in ...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. If f(x)=|x-a|varphi(x), where varphi(x) is continuous function, then f...

    Text Solution

    |

  16. If f(x)=x^2+(x^2)/(1+x^2)+(x^2)/((1+x^2)^2)+. . . . +(x^2)/((1+x^2)^n)...

    Text Solution

    |

  17. If f(x)= | log10x| then at x=1.

    Text Solution

    |

  18. If f(x)=|log(e) x|,then

    Text Solution

    |

  19. If f(x)=|log(e)|x||," then "f'(x) equals

    Text Solution

    |

  20. Let f(x)={1/(|x|)\ \ \ \ \ for\ |x|geq1a x^2+b\ \ \ \ \ \ \ \ for\ |x|...

    Text Solution

    |

  21. Let h(x)="min "{x,x^(2)} for every real number of x. Then, which one o...

    Text Solution

    |