Home
Class 12
MATHS
If the function f(x)={{:(,-x,x lt 1),(...

If the function
`f(x)={{:(,-x,x lt 1),(,a+cos^(-1)(x+b),1 le xle 2):}` is differentiable at x=1, then `(a)/(b)` is equal to

A

`(-pi-2)/(2)`

B

`-1-cos^(-1)`

C

`(pi)/(2)+1`

D

`(pi)/(2)-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous and differentiable at \( x = 1 \). The function is defined as follows: \[ f(x) = \begin{cases} -x & \text{if } x < 1 \\ a + \cos^{-1}(x + b) & \text{if } 1 \leq x \leq 2 \end{cases} \] ### Step 1: Check Continuity at \( x = 1 \) For \( f(x) \) to be continuous at \( x = 1 \), we need: \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = f(1) \] Calculating the left-hand limit: \[ \lim_{x \to 1^-} f(x) = -1 \] Calculating the right-hand limit: \[ \lim_{x \to 1^+} f(x) = a + \cos^{-1}(1 + b) \] Setting these equal for continuity: \[ -1 = a + \cos^{-1}(1 + b) \] ### Step 2: Check Differentiability at \( x = 1 \) For \( f(x) \) to be differentiable at \( x = 1 \), we need: \[ f'(1^-) = f'(1^+) \] Calculating the left-hand derivative: \[ f'(x) = -1 \quad \text{for } x < 1 \quad \Rightarrow \quad f'(1^-) = -1 \] Calculating the right-hand derivative: Using the derivative of \( \cos^{-1}(x) \): \[ f'(x) = -\frac{1}{\sqrt{1 - (x + b)^2}} \quad \text{for } 1 \leq x \leq 2 \] Thus, \[ f'(1^+) = -\frac{1}{\sqrt{1 - (1 + b)^2}} \] Setting these equal for differentiability: \[ -1 = -\frac{1}{\sqrt{1 - (1 + b)^2}} \] ### Step 3: Solve the Differentiability Equation From the equation: \[ 1 = \frac{1}{\sqrt{1 - (1 + b)^2}} \] Squaring both sides: \[ 1 = \frac{1}{1 - (1 + b)^2} \] This implies: \[ 1 - (1 + b)^2 = 1 \quad \Rightarrow \quad (1 + b)^2 = 0 \] Thus: \[ 1 + b = 0 \quad \Rightarrow \quad b = -1 \] ### Step 4: Substitute \( b \) into the Continuity Equation Substituting \( b = -1 \) into the continuity equation: \[ -1 = a + \cos^{-1}(1 - 1) \quad \Rightarrow \quad -1 = a + \cos^{-1}(0) \] Since \( \cos^{-1}(0) = \frac{\pi}{2} \): \[ -1 = a + \frac{\pi}{2} \quad \Rightarrow \quad a = -1 - \frac{\pi}{2} \] ### Step 5: Find \( \frac{a}{b} \) Now we have: \[ a = -1 - \frac{\pi}{2}, \quad b = -1 \] Calculating \( \frac{a}{b} \): \[ \frac{a}{b} = \frac{-1 - \frac{\pi}{2}}{-1} = 1 + \frac{\pi}{2} \] Thus, the final answer is: \[ \frac{a}{b} = \frac{\pi}{2} + 1 \] ### Final Answer: \[ \frac{a}{b} = \frac{\pi}{2} + 1 \] ---

To solve the problem, we need to ensure that the function \( f(x) \) is continuous and differentiable at \( x = 1 \). The function is defined as follows: \[ f(x) = \begin{cases} -x & \text{if } x < 1 \\ a + \cos^{-1}(x + b) & \text{if } 1 \leq x \leq 2 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(,ax^(2)-b,|x|lt 1),(,(1)/(|x|),|x| ge1):} is differentiable at x=1, then

If f(x)={{:(a+cos^(-1)(x+b),":",xge1),(-x,":",xlt1):} is differentiable at x = 1, then the value of b-a is equal to

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

If f(x)={{:(2x^(2)+3,,,xge3),(ax^(2)+bx+1,,,xle3):} is differentiable everywhere, then (a)/(b^(2)) is equal to

Show that the function f(x)={:{(x^2+2", " xge1),(2x+1", " x lt 1 ):} is always differentiable at x=1

Given f(x)={(x^2 xx e^(2(x-1)), 0 le x le 1), (acos(2x-2)+bx^2, 1 lt x le2):} is differentiable at x=1 , then the value of |a - b| is

If the function g(x)={{:(,k sqrt(x+1),0 le x le3),(,mx+2,3lt xle5):} is differentiable, then the value of k+m is

If the function f(x)= {(3ax +b", " x gt 1 ),(11 ", "x=1),(5 ax-2b", " x lt 1):} continuous at x= 1 then ( a, b) =?

Show that the function f(x)={{:(,x^2,x le 1),(,1/x,x gt 1):} continuous at x=1 but not differentiable.

If f(x)={:{(x^2", "x le 1),( x^2-x+1"," x gt1):} then show that f(x) is not differentiable at x=1 .

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Exercise
  1. If the function f(x)={{:(,-x,x lt 1),(,a+cos^(-1)(x+b),1 le xle 2):}...

    Text Solution

    |

  2. The function f(x) = (4-x^(2))/(4x-x^(3)) is discontinuous at

    Text Solution

    |

  3. Let f(x)=|x| and g(x)=|x^3| , then (a).f(x) and g(x) both are continuo...

    Text Solution

    |

  4. The function f(x)=sin^(-1)(cosx) is discontinuous at x=0 (b) continuou...

    Text Solution

    |

  5. The set of points where the function f(x)=x|x| is differentiable is...

    Text Solution

    |

  6. On the interval I = [-2, 2], if the function f(x) = {{:((x+1)e^(-((1)/...

    Text Solution

    |

  7. If f(x)={{:(,(|x+2|)/(tan^(-1)(x+2)),x ne -2),(,2, x=-2):}, then f(x) ...

    Text Solution

    |

  8. Let f(x)=(x+|x|)|x| . Then, for all x f is continuous

    Text Solution

    |

  9. The set of all points where the function f(x)=sqrt(1-e^(-x^2)) is di...

    Text Solution

    |

  10. The function f(x)=e^(-|x|) is continuous everywhere but not differe...

    Text Solution

    |

  11. The function f(x)=[cos x] is

    Text Solution

    |

  12. If f(x)=sqrt(1-sqrt(1-x^2)) , then f(x) is (a) continuous on [-1, 1] ...

    Text Solution

    |

  13. If f(x) = sin ^(-1)((2x)/(1 + x^(2))) then f (x) is differentiable in ...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. If f(x)=|x-a|varphi(x), where varphi(x) is continuous function, then f...

    Text Solution

    |

  16. If f(x)=x^2+(x^2)/(1+x^2)+(x^2)/((1+x^2)^2)+. . . . +(x^2)/((1+x^2)^n)...

    Text Solution

    |

  17. If f(x)= | log10x| then at x=1.

    Text Solution

    |

  18. If f(x)=|log(e) x|,then

    Text Solution

    |

  19. If f(x)=|log(e)|x||," then "f'(x) equals

    Text Solution

    |

  20. Let f(x)={1/(|x|)\ \ \ \ \ for\ |x|geq1a x^2+b\ \ \ \ \ \ \ \ for\ |x|...

    Text Solution

    |

  21. Let h(x)="min "{x,x^(2)} for every real number of x. Then, which one o...

    Text Solution

    |