Home
Class 12
MATHS
The function f (x) given by f(x) =sin^(-...

The function `f (x)` given by `f(x) =sin^(-1)((2x)/(1+x^2))` is

A

everywhere differentiable such that `f'(x)=-(2)/(1+x^(2))`

B

`"such that f'(x)"={{:(,(2)/(1+x^(2)),-1 lt x lt 1),(,(-2)/(1+x^(2)),|x| gt 1):}`

C

`"such that f'(x)"={{:(,(-2)/(1+x^(2)),-1 lt x lt 1),(,(+2)/(1+x^(2)),|x| gt 1):}`

D

not differentiable at infinitely many points.

Text Solution

AI Generated Solution

The correct Answer is:
To determine the properties of the function \( f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right) \), we will analyze its differentiability and find its derivative. ### Step 1: Identify the function and its domain The function is defined as: \[ f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right) \] The expression inside the inverse sine function, \( \frac{2x}{1+x^2} \), must lie within the range \([-1, 1]\) for \( f(x) \) to be defined. ### Step 2: Determine the range of \( \frac{2x}{1+x^2} \) To find the range of \( \frac{2x}{1+x^2} \), we can analyze its behavior: - The function \( \frac{2x}{1+x^2} \) can be rewritten as \( 2 \tan(\theta) \) where \( x = \tan(\theta) \). - As \( x \) varies from \(-\infty\) to \(+\infty\), \( \frac{2x}{1+x^2} \) varies between \(-1\) and \(1\). ### Step 3: Differentiate \( f(x) \) Using the chain rule, we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}\left(\sin^{-1}\left(\frac{2x}{1+x^2}\right)\right) = \frac{1}{\sqrt{1 - \left(\frac{2x}{1+x^2}\right)^2}} \cdot \frac{d}{dx}\left(\frac{2x}{1+x^2}\right) \] ### Step 4: Differentiate \( \frac{2x}{1+x^2} \) To differentiate \( \frac{2x}{1+x^2} \), we use the quotient rule: \[ \frac{d}{dx}\left(\frac{2x}{1+x^2}\right) = \frac{(1+x^2)(2) - 2x(2x)}{(1+x^2)^2} = \frac{2 + 2x^2 - 4x^2}{(1+x^2)^2} = \frac{2 - 2x^2}{(1+x^2)^2} = \frac{2(1-x^2)}{(1+x^2)^2} \] ### Step 5: Substitute back into the derivative of \( f(x) \) Now substituting back: \[ f'(x) = \frac{1}{\sqrt{1 - \left(\frac{2x}{1+x^2}\right)^2}} \cdot \frac{2(1-x^2)}{(1+x^2)^2} \] ### Step 6: Simplify the derivative To simplify \( f'(x) \): 1. Calculate \( 1 - \left(\frac{2x}{1+x^2}\right)^2 \): \[ = 1 - \frac{4x^2}{(1+x^2)^2} = \frac{(1+x^2)^2 - 4x^2}{(1+x^2)^2} = \frac{1 - 2x^2 + x^4}{(1+x^2)^2} = \frac{(1-x^2)^2}{(1+x^2)^2} \] 2. Thus, \[ f'(x) = \frac{2(1-x^2)}{(1+x^2)^2} \cdot \frac{(1+x^2)}{1-x^2} = \frac{2(1-x^2)}{(1+x^2)(1-x^2)} = \frac{2}{1+x^2} \] ### Step 7: Analyze the differentiability - For \( |x| < 1 \), \( f'(x) = \frac{2}{1+x^2} \). - For \( |x| > 1 \), we have \( f'(x) = -\frac{2}{1+x^2} \). ### Conclusion The function \( f(x) \) is differentiable everywhere except at points where \( \frac{2x}{1+x^2} \) is not defined or where the derivative changes sign, which happens at infinitely many points.

To determine the properties of the function \( f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right) \), we will analyze its differentiability and find its derivative. ### Step 1: Identify the function and its domain The function is defined as: \[ f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right) \] The expression inside the inverse sine function, \( \frac{2x}{1+x^2} \), must lie within the range \([-1, 1]\) for \( f(x) \) to be defined. ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

Statement-1: The function f(x) given by f(x)=sin^(-1){log(x+sqrt(x^(2)+1))} is an odd function. Statement:2 The composition of two odd functions is an odd function.

The domain of the function f(x) given by f(x)=(sqrt(4-x^(2)))/(sin^(-1)(2-x)) is

If the function f:R rarr A defined as f(x)=sin^(-1)((x)/(1+x^(2))) is a surjective function, then the set A is

The domain of the function f given by f(x)=(x^(2)+2x+1)/(x^(2)-x-6)

The maximum value of the function f(x) given by f(x)=x(x-1)^2,0ltxlt2 , is

The function f(x) given by f(x)={{:(x^(4)tan""(pix)/(2),|x| lt1),(x|x|,|x| ge1):} is

If function f(x) given by f(x)={{:(,(sin x)^(1//(pi-2x)),xne pi//2),(,lambda,x=pi//2):} is continous at x=(pi)/(2) then lambda =

The function f(x) = sin ^(-1)(cos x) is

Let A=(x in R: x ge 1) . The inverse of the function of f:A to A given by f(x)=2^(x^((x-1)) . Is

Consider the function f:R -{1} given by f (x)= (2x)/(x-1) Then f^(-1)(x) =

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section I - Solved Mcqs
  1. If F(x) = {(sin{cosx})/(x-pi/2),x!=pi/2 and 1,x=pi/2, where {.} repres...

    Text Solution

    |

  2. If alpha, beta(alpha,beta) are the points of discontinuity of the func...

    Text Solution

    |

  3. The function f (x) given by f(x) =sin^(-1)((2x)/(1+x^2)) is

    Text Solution

    |

  4. Let f(x) be the function given by f(x)=arc cos ((1-x^(2))/(1+x^(2))).T...

    Text Solution

    |

  5. If f(x)=sin^(-1)(2xsqrt(1-x^(2))), x in [-1,1]. Then

    Text Solution

    |

  6. If f(x)=cos^(-1)(2x^(2)-1), x in [-1,1]. Then

    Text Solution

    |

  7. If f(x)=tan^(-1) ((2x)/(1-x^(2))), x in R "then "f'(x) is given by

    Text Solution

    |

  8. If y = sin^-1(3x - 4x^3), then the number of points in [-1, 1], wher...

    Text Solution

    |

  9. If f(x)=cos^(-1)(4x^(3)-3x), x in [-1,1], then

    Text Solution

    |

  10. Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if ...

    Text Solution

    |

  11. The function f(x)=sin^(-1)(sinx) , is

    Text Solution

    |

  12. The function, f(x) = cos^(-1) (cos x) is

    Text Solution

    |

  13. The function f(x) = tan^(-1)(tanx) is

    Text Solution

    |

  14. Number of points where the function f(x)="Maximum [sgn (x)",-sqrt(9-x^...

    Text Solution

    |

  15. The function f(x)=1/(log|x|) is discontinuous at

    Text Solution

    |

  16. Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greates...

    Text Solution

    |

  17. If f(x)={{:(,ax^(2)-b,ale xlt 1),(,2,x=1),(,x+1,1 le xle2):} then the ...

    Text Solution

    |

  18. If f(x)=([x])/(|x|), x ne 0, where [.] denotes the greatest integer fu...

    Text Solution

    |

  19. Let f(x)=[|x|] where [.] denotes the greatest integer function, then f...

    Text Solution

    |

  20. If f(x) = [x] [sinx] in (-1,1) then f(x) is

    Text Solution

    |