Home
Class 12
MATHS
Let f(x) be the function given by f(x)=a...

Let f(x) be the function given by `f(x)=arc cos ((1-x^(2))/(1+x^(2))).Then`

A

f(x) is everywhere differential such that `f'(x)=(2)/(1+x^(2))`

B

`f'(x)={{:(,(2)/(1+x^(2)),x gt0),(,(-2)/(1+x^(2)),x lt 0):}`

C

`f'(x)={{:(,(-2)/(1+x^(2)),x gt0),(,(2)/(1+x^(2)),x lt 0):}`

D

f'(x) exists at x=0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the given function \( f(x) = \arccos\left(\frac{1 - x^2}{1 + x^2}\right) \). Let's go through the solution step by step. ### Step 1: Rewrite the function We start with the function: \[ f(x) = \arccos\left(\frac{1 - x^2}{1 + x^2}\right) \] ### Step 2: Differentiate using the chain rule To differentiate \( f(x) \), we apply the chain rule. The derivative of \( \arccos(u) \) is given by: \[ \frac{d}{dx} \arccos(u) = -\frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx} \] where \( u = \frac{1 - x^2}{1 + x^2} \). ### Step 3: Find \( \frac{du}{dx} \) Now, we need to differentiate \( u \): \[ u = \frac{1 - x^2}{1 + x^2} \] Using the quotient rule: \[ \frac{du}{dx} = \frac{(1 + x^2)(-2x) - (1 - x^2)(2x)}{(1 + x^2)^2} \] Simplifying this: \[ \frac{du}{dx} = \frac{-2x(1 + x^2) - 2x(1 - x^2)}{(1 + x^2)^2} = \frac{-2x(1 + x^2 + 1 - x^2)}{(1 + x^2)^2} = \frac{-4x}{(1 + x^2)^2} \] ### Step 4: Substitute \( u \) and \( \frac{du}{dx} \) into the derivative Now we substitute \( u \) and \( \frac{du}{dx} \) back into the derivative of \( f(x) \): \[ f'(x) = -\frac{1}{\sqrt{1 - \left(\frac{1 - x^2}{1 + x^2}\right)^2}} \cdot \frac{-4x}{(1 + x^2)^2} \] ### Step 5: Simplify \( 1 - u^2 \) Next, we need to simplify \( 1 - u^2 \): \[ 1 - u^2 = 1 - \left(\frac{1 - x^2}{1 + x^2}\right)^2 = \frac{(1 + x^2)^2 - (1 - x^2)^2}{(1 + x^2)^2} \] Calculating the numerator: \[ (1 + x^2)^2 - (1 - x^2)^2 = (1 + 2x^2 + x^4) - (1 - 2x^2 + x^4) = 4x^2 \] Thus: \[ 1 - u^2 = \frac{4x^2}{(1 + x^2)^2} \] ### Step 6: Substitute back into \( f'(x) \) Now substituting back into the derivative: \[ f'(x) = -\frac{1}{\sqrt{\frac{4x^2}{(1 + x^2)^2}}} \cdot \frac{-4x}{(1 + x^2)^2} = \frac{(1 + x^2)}{2|x|} \cdot \frac{4x}{(1 + x^2)^2} \] This simplifies to: \[ f'(x) = \frac{2}{1 + x^2} \quad \text{for } x > 0 \] And for \( x < 0 \), we have: \[ f'(x) = -\frac{2}{1 + x^2} \] ### Step 7: Conclusion Thus, we conclude: - For \( x > 0 \), \( f'(x) = \frac{2}{1 + x^2} \) - For \( x < 0 \), \( f'(x) = -\frac{2}{1 + x^2} \) ### Final Answer The correct option is: - \( f'(x) = \frac{2}{1 + x^2} \) for \( x > 0 \) - \( f'(x) = -\frac{2}{1 + x^2} \) for \( x < 0 \)

To solve the problem, we need to differentiate the given function \( f(x) = \arccos\left(\frac{1 - x^2}{1 + x^2}\right) \). Let's go through the solution step by step. ### Step 1: Rewrite the function We start with the function: \[ f(x) = \arccos\left(\frac{1 - x^2}{1 + x^2}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

The function f (x) given by f(x) =sin^(-1)((2x)/(1+x^2)) is

The domain of the function f given by f(x)=(x^(2)+2x+1)/(x^(2)-x-6)

Let f:R->R be a function defined by f(x)=x^2-(x^2)/(1+x^2) . Then:

Let f:R to R be a function defined by f(x)=(|x|^(3)+|x|)/(1+x^(2)) , then the graph of f(x) lies in the

The domain of the function f(x) given by f(x)=(sqrt(4-x^(2)))/(sin^(-1)(2-x)) is

Statement 1 : Let f : r-{3} be a function given by , f(x+10)=(f(x)-5)/(f(x)-3)," then " f(10)=f(50) . Statement 2 : f (x) is a periodic function.

Let f:R to R be the function defined by f(x) = (1)/(2-cos x), AA x in R. Then, find the range of f .

Let f: R->R be a function given by f(x)=x^2+1. Find: f^(-1){-5}

Let f: R->R be a function given by f(x)=x^2+1. Find: f^(-1){26}

Let f: R->R be a function given by f(x)=x^2+1. Find: f^(-1){10 , 37}

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section I - Solved Mcqs
  1. If alpha, beta(alpha,beta) are the points of discontinuity of the func...

    Text Solution

    |

  2. The function f (x) given by f(x) =sin^(-1)((2x)/(1+x^2)) is

    Text Solution

    |

  3. Let f(x) be the function given by f(x)=arc cos ((1-x^(2))/(1+x^(2))).T...

    Text Solution

    |

  4. If f(x)=sin^(-1)(2xsqrt(1-x^(2))), x in [-1,1]. Then

    Text Solution

    |

  5. If f(x)=cos^(-1)(2x^(2)-1), x in [-1,1]. Then

    Text Solution

    |

  6. If f(x)=tan^(-1) ((2x)/(1-x^(2))), x in R "then "f'(x) is given by

    Text Solution

    |

  7. If y = sin^-1(3x - 4x^3), then the number of points in [-1, 1], wher...

    Text Solution

    |

  8. If f(x)=cos^(-1)(4x^(3)-3x), x in [-1,1], then

    Text Solution

    |

  9. Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if ...

    Text Solution

    |

  10. The function f(x)=sin^(-1)(sinx) , is

    Text Solution

    |

  11. The function, f(x) = cos^(-1) (cos x) is

    Text Solution

    |

  12. The function f(x) = tan^(-1)(tanx) is

    Text Solution

    |

  13. Number of points where the function f(x)="Maximum [sgn (x)",-sqrt(9-x^...

    Text Solution

    |

  14. The function f(x)=1/(log|x|) is discontinuous at

    Text Solution

    |

  15. Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greates...

    Text Solution

    |

  16. If f(x)={{:(,ax^(2)-b,ale xlt 1),(,2,x=1),(,x+1,1 le xle2):} then the ...

    Text Solution

    |

  17. If f(x)=([x])/(|x|), x ne 0, where [.] denotes the greatest integer fu...

    Text Solution

    |

  18. Let f(x)=[|x|] where [.] denotes the greatest integer function, then f...

    Text Solution

    |

  19. If f(x) = [x] [sinx] in (-1,1) then f(x) is

    Text Solution

    |

  20. If f(x-y), f(x) f(y) and f(x+y) are in A.P. for all x , y ,and f(0)!=0...

    Text Solution

    |