Home
Class 12
MATHS
If f(x)=cos^(-1)(2x^(2)-1), x in [-1,1]....

If `f(x)=cos^(-1)(2x^(2)-1), x in [-1,1].` Then

A

f(x) is differentiable on (-1,1) such that `f'(x)=(-2)/(sqrt(1-x)^(2))`

B

f(x) is differentiable on `(-1,0) uu (0,1)` such that `f'(x)=(-2)/(sqrt(1-x^(2))`

C

f(x) is differentiable on `(-1,0) uu (0,1)` such that `f'(x)={{:(,(-2)/(sqrt(1-x^(2))),0 lt x lt 1),(,(2)/(sqrt(1-x^(2))),-1 lt x lt 0):}`

D

f(x) is differentiable on (-1,1) such that `f'(x)={{:(,(-2)/(sqrt(1-x^(2))),0 le xlt1),(,(2)/(sqrt(1-x^(2))),-1 lt x le 0):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative \( f'(x) \) of the function \( f(x) = \cos^{-1}(2x^2 - 1) \) for \( x \) in the interval \([-1, 1]\). ### Step-by-Step Solution: 1. **Identify the function**: \[ f(x) = \cos^{-1}(2x^2 - 1) \] 2. **Determine the range of \( 2x^2 - 1 \)**: - The expression \( 2x^2 - 1 \) varies as \( x \) goes from -1 to 1. - At \( x = -1 \): \( 2(-1)^2 - 1 = 1 \) - At \( x = 0 \): \( 2(0)^2 - 1 = -1 \) - At \( x = 1 \): \( 2(1)^2 - 1 = 1 \) - Therefore, \( 2x^2 - 1 \) ranges from -1 to 1. 3. **Split the function based on the intervals**: - For \( x \in [0, 1] \): \( f(x) = \cos^{-1}(2x^2 - 1) \) - For \( x \in [-1, 0] \): \( f(x) = 2\pi - \cos^{-1}(2x^2 - 1) \) 4. **Find the derivative \( f'(x) \)**: - Using the derivative of \( \cos^{-1}(u) \), which is \( -\frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx} \): - Let \( u = 2x^2 - 1 \), then \( \frac{du}{dx} = 4x \). - Thus, for \( x \in [0, 1] \): \[ f'(x) = -\frac{1}{\sqrt{1 - (2x^2 - 1)^2}} \cdot 4x \] - For \( x \in [-1, 0] \): \[ f'(x) = \frac{4x}{\sqrt{1 - (2x^2 - 1)^2}} \] 5. **Evaluate the expression \( 1 - (2x^2 - 1)^2 \)**: - Simplifying \( 1 - (2x^2 - 1)^2 \): \[ = 1 - (4x^4 - 4x^2 + 1) = 4x^2 - 4x^4 \] - Thus, \( \sqrt{1 - (2x^2 - 1)^2} = \sqrt{4x^2(1 - x^2)} = 2|x|\sqrt{1 - x^2} \). 6. **Final form of \( f'(x) \)**: - For \( x \in [0, 1] \): \[ f'(x) = -\frac{4x}{2x\sqrt{1 - x^2}} = -\frac{2}{\sqrt{1 - x^2}} \] - For \( x \in [-1, 0] \): \[ f'(x) = \frac{4x}{2(-x)\sqrt{1 - x^2}} = \frac{2}{\sqrt{1 - x^2}} \] 7. **Check differentiability at \( x = 0 \)**: - The left-hand derivative at \( x = 0 \) is \( \frac{2}{\sqrt{1 - 0^2}} = 2 \). - The right-hand derivative at \( x = 0 \) is \( -\frac{2}{\sqrt{1 - 0^2}} = -2 \). - Since the left-hand and right-hand derivatives do not match, \( f(x) \) is not differentiable at \( x = 0 \). ### Conclusion: The derivative \( f'(x) \) is given by: \[ f'(x) = \begin{cases} -\frac{2}{\sqrt{1 - x^2}} & \text{if } x \in (0, 1] \\ \frac{2}{\sqrt{1 - x^2}} & \text{if } x \in [-1, 0) \end{cases} \] And \( f(x) \) is not differentiable at \( x = 0 \).

To solve the problem, we need to find the derivative \( f'(x) \) of the function \( f(x) = \cos^{-1}(2x^2 - 1) \) for \( x \) in the interval \([-1, 1]\). ### Step-by-Step Solution: 1. **Identify the function**: \[ f(x) = \cos^{-1}(2x^2 - 1) \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=sin^(-1)((2x)/(1+x^(2))) and g(x)=cos^(-1)((x^(2)-1)/(x^(2)+1)) . Then tha value of f(10)-g(100) is equal to

Let f(x)= cos^(-1)((x^(2))/(x^(2)+1)) . Then , the range of the f , is

f(x)=cos^(-1)(x^(2)/sqrt(1+x^(2)))

Range of f(x)=cos^(- 1)x+2sin^(- 1)x+3tan^(- 1)x is

Find the domain of the following following functions: (a) f(x)=(sin^(-1))/(x) (b) f(x)=sin^(-1)(|x-1|-2) (c ) f(x)=cos^(-1)(1+3x+2x^(2)) (d ) f(x)=(sin^(-1)(x-3))/(sqrt(9-x^(2))) (e ) f(x)="cos"^(-1)((6-3x)/(4))+"cosec"^(-1)((x-1)/(2)) (f) f(x)=sqrt("sec"^(-1)((2-|x|)/(4)))

If x in R , then f(x)=cos^(-1)((1-x^(2))/(1+x^(2))) is equal to

If f(x)="cos"^(2)x+"sec"^(2)x , then (i) f(x)lt1 (ii) f(x)=1 (iii) 2ltf(x)lt1 (iv) f(x)ge2

If f(x) = cos(x)cos(2x)cos(2^(2)x)…cos(2^(n-1)x) and n gt1 , then f'((pi)/(2)) is

If the range of f(x)=tan^(1)x+2sin^(-1)x+cos^(-1)x is [a, b] , then

If f(x)=(2x+sin^(-1)x)/(2x-tan^(-1)x) is continuous for all x in (-1,1) , then value of f (0) is

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section I - Solved Mcqs
  1. Let f(x) be the function given by f(x)=arc cos ((1-x^(2))/(1+x^(2))).T...

    Text Solution

    |

  2. If f(x)=sin^(-1)(2xsqrt(1-x^(2))), x in [-1,1]. Then

    Text Solution

    |

  3. If f(x)=cos^(-1)(2x^(2)-1), x in [-1,1]. Then

    Text Solution

    |

  4. If f(x)=tan^(-1) ((2x)/(1-x^(2))), x in R "then "f'(x) is given by

    Text Solution

    |

  5. If y = sin^-1(3x - 4x^3), then the number of points in [-1, 1], wher...

    Text Solution

    |

  6. If f(x)=cos^(-1)(4x^(3)-3x), x in [-1,1], then

    Text Solution

    |

  7. Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if ...

    Text Solution

    |

  8. The function f(x)=sin^(-1)(sinx) , is

    Text Solution

    |

  9. The function, f(x) = cos^(-1) (cos x) is

    Text Solution

    |

  10. The function f(x) = tan^(-1)(tanx) is

    Text Solution

    |

  11. Number of points where the function f(x)="Maximum [sgn (x)",-sqrt(9-x^...

    Text Solution

    |

  12. The function f(x)=1/(log|x|) is discontinuous at

    Text Solution

    |

  13. Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greates...

    Text Solution

    |

  14. If f(x)={{:(,ax^(2)-b,ale xlt 1),(,2,x=1),(,x+1,1 le xle2):} then the ...

    Text Solution

    |

  15. If f(x)=([x])/(|x|), x ne 0, where [.] denotes the greatest integer fu...

    Text Solution

    |

  16. Let f(x)=[|x|] where [.] denotes the greatest integer function, then f...

    Text Solution

    |

  17. If f(x) = [x] [sinx] in (-1,1) then f(x) is

    Text Solution

    |

  18. If f(x-y), f(x) f(y) and f(x+y) are in A.P. for all x , y ,and f(0)!=0...

    Text Solution

    |

  19. Let f(x) = Degree of (u^(x^2) + u^2 +2u + 3). Then, at x=sqrt2, f(x...

    Text Solution

    |

  20. LEt F: R->R is a differntiable function f(x+2y) =f(x) + f(2y) +4xy for...

    Text Solution

    |