Home
Class 12
MATHS
If f(x)=tan^(-1) ((2x)/(1-x^(2))), x in ...

If `f(x)=tan^(-1) ((2x)/(1-x^(2))), x in R "then "f'(x)` is given by

A

`f'(x)=(2)/(1+x^(2))"for all x"in R (-1,1)`

B

`f'(x)=(2)/(1+x^(2))"for all x"in R`

C

`F'(x)={{:(,(2)/(1+x^(2)),"if "|x| le 1),(,(-2)/(1+x^(2)),"if |x| gt 1):}`

D

`f'(x)={{:(,(2)/(1+x^(2)),"if "|x| lt 1),(,(-2)/(1+x^(2)),"if |x| gt 1):}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( f'(x) \) of the function \( f(x) = \tan^{-1} \left( \frac{2x}{1 - x^2} \right) \), we will follow these steps: ### Step 1: Identify the function We start with the function: \[ f(x) = \tan^{-1} \left( \frac{2x}{1 - x^2} \right) \] ### Step 2: Differentiate using the chain rule To differentiate \( f(x) \), we will use the chain rule. The derivative of \( \tan^{-1}(u) \) is given by: \[ \frac{d}{dx} \tan^{-1}(u) = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] where \( u = \frac{2x}{1 - x^2} \). ### Step 3: Find \( u \) and its derivative \( \frac{du}{dx} \) First, we need to differentiate \( u \): \[ u = \frac{2x}{1 - x^2} \] Using the quotient rule: \[ \frac{du}{dx} = \frac{(1 - x^2)(2) - 2x(-2x)}{(1 - x^2)^2} \] Simplifying this gives: \[ \frac{du}{dx} = \frac{2(1 - x^2 + 2x^2)}{(1 - x^2)^2} = \frac{2(1 + x^2)}{(1 - x^2)^2} \] ### Step 4: Substitute \( u \) and \( \frac{du}{dx} \) into the derivative formula Now we substitute \( u \) and \( \frac{du}{dx} \) into the derivative formula: \[ f'(x) = \frac{1}{1 + \left( \frac{2x}{1 - x^2} \right)^2} \cdot \frac{2(1 + x^2)}{(1 - x^2)^2} \] ### Step 5: Simplify \( 1 + u^2 \) Calculating \( 1 + u^2 \): \[ 1 + u^2 = 1 + \left( \frac{2x}{1 - x^2} \right)^2 = 1 + \frac{4x^2}{(1 - x^2)^2} = \frac{(1 - x^2)^2 + 4x^2}{(1 - x^2)^2} = \frac{1 - 2x^2 + x^4 + 4x^2}{(1 - x^2)^2} = \frac{1 + 2x^2 + x^4}{(1 - x^2)^2} \] ### Step 6: Final expression for \( f'(x) \) Now substituting back, we get: \[ f'(x) = \frac{2(1 + x^2)}{(1 + 2x^2 + x^4)} \cdot \frac{(1 - x^2)^2}{(1 - x^2)^2} \] This simplifies to: \[ f'(x) = \frac{2(1 + x^2)}{1 + 2x^2 + x^4} \] ### Step 7: Check points of non-differentiability The function \( f(x) \) is not continuous at \( x = \pm 1 \) because the denominator \( 1 - x^2 \) becomes zero. Therefore, \( f'(x) \) is not defined at these points. ### Final Answer Thus, the derivative \( f'(x) \) is: \[ f'(x) = \frac{2(1 + x^2)}{1 + 2x^2 + x^4}, \quad x \in \mathbb{R}, \, x \neq \pm 1 \]

To find the derivative \( f'(x) \) of the function \( f(x) = \tan^{-1} \left( \frac{2x}{1 - x^2} \right) \), we will follow these steps: ### Step 1: Identify the function We start with the function: \[ f(x) = \tan^{-1} \left( \frac{2x}{1 - x^2} \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = tan^(-1)(((x-2))/(x^(2)+2x+2)) ,then 26 f'(1) is

If f(x)+2f(1-x)=x^2+2AA x in R, then f(x) given as

If f(x)+2f(1-x)=x^2+2AA x in R, then f(x) given as

Let f(x)=2x-tan^-1 x- ln(x+sqrt(1+x^2)); x in R, then

Let f(x) = x - [x] , x in R then f(1/2) is

if f(x) = tan^(1) x -(1//2) ln x. then

If f(x)=9x-x^(2) , x in R , then f(a+1)-f(a-1) is equal to

If f(x) = tan^(-1)((2^x)/(1 + 2^(2x + 1))) , then sum_(r = 0)^(9) f(r ) is

If the function f:R rarrA defined as f(x)=tan^(-1)((2x^(3))/(1+x^(6))) is a surjective function, then the set A is equal to

If f(x) is a function of x such that (1)/((1+x)(1+x^(2)))=(A)/(1+x)+(f(x))/((1+x^(2)) for all x in R then f(x) is

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section I - Solved Mcqs
  1. If f(x)=sin^(-1)(2xsqrt(1-x^(2))), x in [-1,1]. Then

    Text Solution

    |

  2. If f(x)=cos^(-1)(2x^(2)-1), x in [-1,1]. Then

    Text Solution

    |

  3. If f(x)=tan^(-1) ((2x)/(1-x^(2))), x in R "then "f'(x) is given by

    Text Solution

    |

  4. If y = sin^-1(3x - 4x^3), then the number of points in [-1, 1], wher...

    Text Solution

    |

  5. If f(x)=cos^(-1)(4x^(3)-3x), x in [-1,1], then

    Text Solution

    |

  6. Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if ...

    Text Solution

    |

  7. The function f(x)=sin^(-1)(sinx) , is

    Text Solution

    |

  8. The function, f(x) = cos^(-1) (cos x) is

    Text Solution

    |

  9. The function f(x) = tan^(-1)(tanx) is

    Text Solution

    |

  10. Number of points where the function f(x)="Maximum [sgn (x)",-sqrt(9-x^...

    Text Solution

    |

  11. The function f(x)=1/(log|x|) is discontinuous at

    Text Solution

    |

  12. Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greates...

    Text Solution

    |

  13. If f(x)={{:(,ax^(2)-b,ale xlt 1),(,2,x=1),(,x+1,1 le xle2):} then the ...

    Text Solution

    |

  14. If f(x)=([x])/(|x|), x ne 0, where [.] denotes the greatest integer fu...

    Text Solution

    |

  15. Let f(x)=[|x|] where [.] denotes the greatest integer function, then f...

    Text Solution

    |

  16. If f(x) = [x] [sinx] in (-1,1) then f(x) is

    Text Solution

    |

  17. If f(x-y), f(x) f(y) and f(x+y) are in A.P. for all x , y ,and f(0)!=0...

    Text Solution

    |

  18. Let f(x) = Degree of (u^(x^2) + u^2 +2u + 3). Then, at x=sqrt2, f(x...

    Text Solution

    |

  19. LEt F: R->R is a differntiable function f(x+2y) =f(x) + f(2y) +4xy for...

    Text Solution

    |

  20. Let f:R to R be a function given by f(x+y)=f(x)f(y)"for all "x,yin R...

    Text Solution

    |