Home
Class 12
MATHS
If f(x)=cos^(-1)(4x^(3)-3x), x in [-1,1]...

If `f(x)=cos^(-1)(4x^(3)-3x), x in [-1,1]`, then

A

`f'(x)=(-3)/(sqrt(1-x^(2)))"for all "x in [-1,1]`

B

`f'(x)=(-3)/(sqrt(1-x^(2)))"for all "x in [-1,1]`

C

`f'(x)={{:(,(-3)/(sqrt(1-x^(2))),"if "|x|lt (1)/(2)),(,(3)/(sqrt(1-x^(2))),"if "(1)/(2) lt |x| lt (1)/(2)):}`

D

`f'(x)={{:(,(-3)/(sqrt(1-x^(2))),"if "|x|lt (1)/(2)),(,(-3)/(sqrt(1-x^(2))),"if "lt x lt(-1)/(2)","(1)/(2) lt x lt 1):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function given by \( f(x) = \cos^{-1}(4x^3 - 3x) \) for \( x \) in the interval \([-1, 1]\). ### Step 1: Understand the function The function \( f(x) = \cos^{-1}(4x^3 - 3x) \) is defined in terms of the inverse cosine function. The expression \( 4x^3 - 3x \) is a polynomial that we need to analyze to ensure it stays within the range of the cosine function, which is \([-1, 1]\). ### Step 2: Determine the range of \( 4x^3 - 3x \) To find the range of \( 4x^3 - 3x \) for \( x \in [-1, 1] \), we can find the critical points by differentiating the function: \[ g(x) = 4x^3 - 3x \] Calculating the derivative: \[ g'(x) = 12x^2 - 3 \] Setting the derivative to zero to find critical points: \[ 12x^2 - 3 = 0 \implies 12x^2 = 3 \implies x^2 = \frac{1}{4} \implies x = \pm \frac{1}{2} \] ### Step 3: Evaluate \( g(x) \) at critical points and endpoints Now we evaluate \( g(x) \) at the critical points and the endpoints of the interval: 1. At \( x = -1 \): \[ g(-1) = 4(-1)^3 - 3(-1) = -4 + 3 = -1 \] 2. At \( x = -\frac{1}{2} \): \[ g\left(-\frac{1}{2}\right) = 4\left(-\frac{1}{2}\right)^3 - 3\left(-\frac{1}{2}\right) = 4\left(-\frac{1}{8}\right) + \frac{3}{2} = -\frac{1}{2} + \frac{3}{2} = 1 \] 3. At \( x = \frac{1}{2} \): \[ g\left(\frac{1}{2}\right) = 4\left(\frac{1}{2}\right)^3 - 3\left(\frac{1}{2}\right) = 4\left(\frac{1}{8}\right) - \frac{3}{2} = \frac{1}{2} - \frac{3}{2} = -1 \] 4. At \( x = 1 \): \[ g(1) = 4(1)^3 - 3(1) = 4 - 3 = 1 \] ### Step 4: Determine the range of \( g(x) \) From the evaluations, we find: - \( g(-1) = -1 \) - \( g\left(-\frac{1}{2}\right) = 1 \) - \( g\left(\frac{1}{2}\right) = -1 \) - \( g(1) = 1 \) Thus, the range of \( g(x) \) for \( x \in [-1, 1] \) is \([-1, 1]\). ### Step 5: Analyze \( f(x) \) Since \( g(x) \) takes values in \([-1, 1]\), \( f(x) = \cos^{-1}(g(x)) \) is well-defined for all \( x \in [-1, 1] \). ### Step 6: Find the derivative \( f'(x) \) Using the chain rule, we find the derivative of \( f(x) \): \[ f'(x) = -\frac{1}{\sqrt{1 - (4x^3 - 3x)^2}} \cdot (12x^2 - 3) \] ### Step 7: Determine the intervals for \( f'(x) \) We analyze the sign of \( f'(x) \) based on the critical points and the intervals determined by \( g'(x) = 0 \). ### Final Answer The function \( f(x) \) is continuous and differentiable on the interval \([-1, 1]\).

To solve the problem, we need to analyze the function given by \( f(x) = \cos^{-1}(4x^3 - 3x) \) for \( x \) in the interval \([-1, 1]\). ### Step 1: Understand the function The function \( f(x) = \cos^{-1}(4x^3 - 3x) \) is defined in terms of the inverse cosine function. The expression \( 4x^3 - 3x \) is a polynomial that we need to analyze to ensure it stays within the range of the cosine function, which is \([-1, 1]\). ### Step 2: Determine the range of \( 4x^3 - 3x \) To find the range of \( 4x^3 - 3x \) for \( x \in [-1, 1] \), we can find the critical points by differentiating the function: ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

Draw a graph of the function f(x) = cos^(-1) (4x^(3)-3x), x in [-1,1] and find the ara enclosed between the graph of the function and the x-axis varies from 0 to 1.

Prove that: 3cos^(-1)x=cos^(-1)(4x^3-3x), x in [1/2,1]

"If "f(x)=(x-1)^(4)(x-2)^(3)(x-3)^(2)(x-4), then the value of f'''(1)+f''(2)+f'(3)+f'(4) equals

If cos^(-1)(cos 4)gt3x^(2)-4x then

If f(x)=sin^(-1)(3x-4x^(3)). Then answer the following The value of f'((1)/(sqrt2)) , is

If f(x)=sin^(-1)(3x-4x^(3)). Then answer the following The value of f'(0), is

If f(x)=cos^(-1)(4x^3-3x)and lim_(xto1/2+)f'(x)=a and lim_(xto1/2-)f'(x)=b then a + b+ 3 is equal to ____

Define y=cos^(-1)(4x^(3)-3x) in terms of cos^(-1)x

Let cos^(-1)(4x^(3)-3x)=a+b cos^(-1)x Q. If x in [-(1)/(2), (1)/(2)] , then sin^(-1)("sin"(a)/(b)) is :

If f (x )= (x-1) ^(4) (x-2) ^(3) (x-3) ^(2) then the value of f '(1) +f''(2) +f''(3) is:

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section I - Solved Mcqs
  1. If f(x)=tan^(-1) ((2x)/(1-x^(2))), x in R "then "f'(x) is given by

    Text Solution

    |

  2. If y = sin^-1(3x - 4x^3), then the number of points in [-1, 1], wher...

    Text Solution

    |

  3. If f(x)=cos^(-1)(4x^(3)-3x), x in [-1,1], then

    Text Solution

    |

  4. Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if ...

    Text Solution

    |

  5. The function f(x)=sin^(-1)(sinx) , is

    Text Solution

    |

  6. The function, f(x) = cos^(-1) (cos x) is

    Text Solution

    |

  7. The function f(x) = tan^(-1)(tanx) is

    Text Solution

    |

  8. Number of points where the function f(x)="Maximum [sgn (x)",-sqrt(9-x^...

    Text Solution

    |

  9. The function f(x)=1/(log|x|) is discontinuous at

    Text Solution

    |

  10. Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greates...

    Text Solution

    |

  11. If f(x)={{:(,ax^(2)-b,ale xlt 1),(,2,x=1),(,x+1,1 le xle2):} then the ...

    Text Solution

    |

  12. If f(x)=([x])/(|x|), x ne 0, where [.] denotes the greatest integer fu...

    Text Solution

    |

  13. Let f(x)=[|x|] where [.] denotes the greatest integer function, then f...

    Text Solution

    |

  14. If f(x) = [x] [sinx] in (-1,1) then f(x) is

    Text Solution

    |

  15. If f(x-y), f(x) f(y) and f(x+y) are in A.P. for all x , y ,and f(0)!=0...

    Text Solution

    |

  16. Let f(x) = Degree of (u^(x^2) + u^2 +2u + 3). Then, at x=sqrt2, f(x...

    Text Solution

    |

  17. LEt F: R->R is a differntiable function f(x+2y) =f(x) + f(2y) +4xy for...

    Text Solution

    |

  18. Let f:R to R be a function given by f(x+y)=f(x)f(y)"for all "x,yin R...

    Text Solution

    |

  19. Let f:R in R be a function given by f(x+y)=f(x) f(y)"for all"x,y in R ...

    Text Solution

    |

  20. Let f:R to R be a function given by f(x+y)=f(x) f(y)"for all "x,y in...

    Text Solution

    |