Home
Class 12
MATHS
If f(x)={{:(,ax^(2)-b,ale xlt 1),(,2,x=1...

If `f(x)={{:(,ax^(2)-b,ale xlt 1),(,2,x=1),(,x+1,1 le xle2):}` then the value of the pair (a,b) for which f(x) cannot be continuous at x=1, is

A

(2,0)

B

(1,-1)

C

(4,2)

D

(1,1)

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( (a, b) \) for which the function \( f(x) \) is not continuous at \( x = 1 \), we need to analyze the left-hand limit (LHL), right-hand limit (RHL), and the value of the function at that point. ### Step 1: Define the function The function is defined as: \[ f(x) = \begin{cases} ax^2 - b & \text{if } x < 1 \\ 2 & \text{if } x = 1 \\ x + 1 & \text{if } 1 < x \leq 2 \end{cases} \] ### Step 2: Find the Left-Hand Limit (LHL) as \( x \) approaches 1 The LHL is calculated using the expression for \( f(x) \) when \( x < 1 \): \[ \text{LHL} = \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (ax^2 - b) = a(1)^2 - b = a - b \] ### Step 3: Find the Right-Hand Limit (RHL) as \( x \) approaches 1 The RHL is calculated using the expression for \( f(x) \) when \( x > 1 \): \[ \text{RHL} = \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x + 1) = 1 + 1 = 2 \] ### Step 4: Set up the condition for discontinuity For \( f(x) \) to be continuous at \( x = 1 \), the following condition must hold: \[ \text{LHL} = \text{RHL} = f(1) \] Thus, for discontinuity: \[ a - b \neq 2 \] ### Step 5: Analyze the pairs \( (a, b) \) We need to find pairs \( (a, b) \) such that \( a - b \neq 2 \). Let's check the given options: 1. **Option 1:** \( (2, 0) \) - \( a - b = 2 - 0 = 2 \) (Continuous) 2. **Option 2:** \( (1, -1) \) - \( a - b = 1 - (-1) = 1 + 1 = 2 \) (Continuous) 3. **Option 3:** \( (4, 2) \) - \( a - b = 4 - 2 = 2 \) (Continuous) 4. **Option 4:** \( (1, 1) \) - \( a - b = 1 - 1 = 0 \) (Not continuous) ### Conclusion The pair \( (a, b) \) for which \( f(x) \) cannot be continuous at \( x = 1 \) is: \[ \boxed{(1, 1)} \]

To determine the values of \( (a, b) \) for which the function \( f(x) \) is not continuous at \( x = 1 \), we need to analyze the left-hand limit (LHL), right-hand limit (RHL), and the value of the function at that point. ### Step 1: Define the function The function is defined as: \[ f(x) = \begin{cases} ax^2 - b & \text{if } x < 1 \\ ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

If f(x)={(ax^2+b ,0lex<1),(4,x=1),(x+3,1ltxge2)) then the value of (a ,b) for which f(x) cannot be continuous at x=1, is (a) (2,2) (b) (3,1) (c) (4,0) (d) (5,2)

If f(x) = {:{(px^(2)-q, x in [0,1)), ( x+1 , x in (1,2]):} and f(1) =2 , then the value of the pair ( p,q) for which f(x) cannot be continuous at x =1 is:

If f(x)={{:(ax^(2)+1",",xgt1),(x+a",",xle1):} is derivable at x=1 , then the value of a is

If f(x)={{:(,ax^(2)-b,|x|lt 1),(,(1)/(|x|),|x| ge1):} is differentiable at x=1, then

If f(x)={(x^2+2,,,xge2),(1-x ,,,xlt2):} ; g(x)={(2x,,,xgt1),(3-x ,,,xle1):} then the value of lim_(x->1) f(g(x)) is

"If "f(x) ={underset(x^(2)+1.2 le x le 3)(2x+1.1 le x le 2), then evaluate int_(1)^(3) f(x) dx.

If f(x)=ax^(2)+bx+c and f(x+1)=f(x)+x+1 , then the value of (a+b) is __

If f(x) is defined as f(x)={{:(x,0le,xle1),(1,x,=1),(2-x,x,gt1):} then show that lim_(Xrarr1) f(x)=1

If f(x) = {{:(|1-4x^(2)|",",0 le x lt 1),([x^(2)-2x]",",1 le x lt 2):} , where [] denotes the greatest integer function, then A. f(x) is continuous for all x in [0, 2) B. f(x) is differentiable for all x in [0, 2) - {1} C. f(X) is differentiable for all x in [0, 2)-{(1)/(2),1} D. None of these

If the function f(x)={{:(,-x,x lt 1),(,a+cos^(-1)(x+b),1 le xle 2):} is differentiable at x=1, then (a)/(b) is equal to

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section I - Solved Mcqs
  1. The function f(x)=1/(log|x|) is discontinuous at

    Text Solution

    |

  2. Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greates...

    Text Solution

    |

  3. If f(x)={{:(,ax^(2)-b,ale xlt 1),(,2,x=1),(,x+1,1 le xle2):} then the ...

    Text Solution

    |

  4. If f(x)=([x])/(|x|), x ne 0, where [.] denotes the greatest integer fu...

    Text Solution

    |

  5. Let f(x)=[|x|] where [.] denotes the greatest integer function, then f...

    Text Solution

    |

  6. If f(x) = [x] [sinx] in (-1,1) then f(x) is

    Text Solution

    |

  7. If f(x-y), f(x) f(y) and f(x+y) are in A.P. for all x , y ,and f(0)!=0...

    Text Solution

    |

  8. Let f(x) = Degree of (u^(x^2) + u^2 +2u + 3). Then, at x=sqrt2, f(x...

    Text Solution

    |

  9. LEt F: R->R is a differntiable function f(x+2y) =f(x) + f(2y) +4xy for...

    Text Solution

    |

  10. Let f:R to R be a function given by f(x+y)=f(x)f(y)"for all "x,yin R...

    Text Solution

    |

  11. Let f:R in R be a function given by f(x+y)=f(x) f(y)"for all"x,y in R ...

    Text Solution

    |

  12. Let f:R to R be a function given by f(x+y)=f(x) f(y)"for all "x,y in...

    Text Solution

    |

  13. Let f:RtoR be a function given by f(x+y)=f(x)f(y) for all x,y in R .If...

    Text Solution

    |

  14. If a differentiable function f defined for x gt0 satisfies the relatio...

    Text Solution

    |

  15. If f(x+y)=2f(x) f(y) for all x,y where f'(0)=3 and f(4)=2, then f'(4) ...

    Text Solution

    |

  16. Let f:R to R be a function given by f(x+y)=f(x)f(y)"for all "x,y in R ...

    Text Solution

    |

  17. Let f:R to R be a function satisfying f(x+y)=f(x)+f(y)"for all "x,y in...

    Text Solution

    |

  18. Let f:R to R be a function given by f(x+y)=f(x)+2y^(2)+"kxy for all ...

    Text Solution

    |

  19. Let f:R rarr R be a function satisfying f(x+y)=f(x)+lambda xy+3x^(2)y^...

    Text Solution

    |

  20. Let f be a differential function satisfying the condition. f((x)/(y))=...

    Text Solution

    |