Home
Class 12
MATHS
If f(x)=([x])/(|x|), x ne 0, where [.] d...

If `f(x)=([x])/(|x|), x ne 0`, where [.] denotes the greatest integer function, then f'(1) is

A

`-1`

B

1

C

non-existent

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(1) \) for the function \( f(x) = \frac{[x]}{|x|} \) where \( [x] \) denotes the greatest integer function and \( x \neq 0 \), we will follow these steps: ### Step 1: Analyze the function The function is defined as: \[ f(x) = \frac{[x]}{|x|} \] We need to evaluate this function in different intervals to understand its behavior. ### Step 2: Determine the function values in different intervals 1. **For \( x \in (-\infty, 0) \)**: - Here, \( |x| = -x \) and \( [x] \) is the greatest integer less than \( x \), which is negative. - Thus, \( f(x) = \frac{[x]}{-x} \). 2. **For \( x \in (0, 1) \)**: - Here, \( |x| = x \) and \( [x] = 0 \) since \( x \) is less than 1. - Thus, \( f(x) = \frac{0}{x} = 0 \). 3. **For \( x \in [1, 2) \)**: - Here, \( |x| = x \) and \( [x] = 1 \). - Thus, \( f(x) = \frac{1}{x} \). ### Step 3: Check continuity at \( x = 1 \) To check if \( f(x) \) is continuous at \( x = 1 \), we need to find the left-hand limit (LHL), right-hand limit (RHL), and the value of the function at that point. - **LHL at \( x = 1 \)**: \[ \text{LHL} = \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} 0 = 0 \] - **RHL at \( x = 1 \)**: \[ \text{RHL} = \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{1}{x} = 1 \] - **Value at \( x = 1 \)**: \[ f(1) = \frac{1}{1} = 1 \] ### Step 4: Conclusion on continuity Since: \[ \text{LHL} = 0 \quad \text{and} \quad \text{RHL} = 1 \quad \text{and} \quad f(1) = 1 \] we see that: \[ \text{LHL} \neq \text{RHL} \] Thus, \( f(x) \) is not continuous at \( x = 1 \). ### Step 5: Differentiability at \( x = 1 \) A function must be continuous at a point to be differentiable there. Since \( f(x) \) is not continuous at \( x = 1 \), it follows that \( f'(1) \) does not exist. ### Final Answer \[ f'(1) \text{ does not exist.} \] ---

To find \( f'(1) \) for the function \( f(x) = \frac{[x]}{|x|} \) where \( [x] \) denotes the greatest integer function and \( x \neq 0 \), we will follow these steps: ### Step 1: Analyze the function The function is defined as: \[ f(x) = \frac{[x]}{|x|} \] We need to evaluate this function in different intervals to understand its behavior. ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

If f(x)=[x] sin ((pi)/([x+1])) , where [.] denotes the greatest integer function, then the set of point of discontiuity of f in its domain is

Let f(x)=|x| and g(x)=[x] , (where [.] denotes the greatest integer function) Then, (fog)'(-1) is

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section I - Solved Mcqs
  1. Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greates...

    Text Solution

    |

  2. If f(x)={{:(,ax^(2)-b,ale xlt 1),(,2,x=1),(,x+1,1 le xle2):} then the ...

    Text Solution

    |

  3. If f(x)=([x])/(|x|), x ne 0, where [.] denotes the greatest integer fu...

    Text Solution

    |

  4. Let f(x)=[|x|] where [.] denotes the greatest integer function, then f...

    Text Solution

    |

  5. If f(x) = [x] [sinx] in (-1,1) then f(x) is

    Text Solution

    |

  6. If f(x-y), f(x) f(y) and f(x+y) are in A.P. for all x , y ,and f(0)!=0...

    Text Solution

    |

  7. Let f(x) = Degree of (u^(x^2) + u^2 +2u + 3). Then, at x=sqrt2, f(x...

    Text Solution

    |

  8. LEt F: R->R is a differntiable function f(x+2y) =f(x) + f(2y) +4xy for...

    Text Solution

    |

  9. Let f:R to R be a function given by f(x+y)=f(x)f(y)"for all "x,yin R...

    Text Solution

    |

  10. Let f:R in R be a function given by f(x+y)=f(x) f(y)"for all"x,y in R ...

    Text Solution

    |

  11. Let f:R to R be a function given by f(x+y)=f(x) f(y)"for all "x,y in...

    Text Solution

    |

  12. Let f:RtoR be a function given by f(x+y)=f(x)f(y) for all x,y in R .If...

    Text Solution

    |

  13. If a differentiable function f defined for x gt0 satisfies the relatio...

    Text Solution

    |

  14. If f(x+y)=2f(x) f(y) for all x,y where f'(0)=3 and f(4)=2, then f'(4) ...

    Text Solution

    |

  15. Let f:R to R be a function given by f(x+y)=f(x)f(y)"for all "x,y in R ...

    Text Solution

    |

  16. Let f:R to R be a function satisfying f(x+y)=f(x)+f(y)"for all "x,y in...

    Text Solution

    |

  17. Let f:R to R be a function given by f(x+y)=f(x)+2y^(2)+"kxy for all ...

    Text Solution

    |

  18. Let f:R rarr R be a function satisfying f(x+y)=f(x)+lambda xy+3x^(2)y^...

    Text Solution

    |

  19. Let f be a differential function satisfying the condition. f((x)/(y))=...

    Text Solution

    |

  20. Let f(x) be a real function not identically zero in Z, such that for a...

    Text Solution

    |