Home
Class 12
MATHS
If f(x)=([x])/(|x|),x ne 0 where [.] den...

If `f(x)=([x])/(|x|),x ne 0` where [.] denotes the greatest integer function, then f'(1) is

A

`-1`

B

1

C

non-existent

D

`oo`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(1) \) for the function \( f(x) = \frac{[x]}{|x|} \) where \( x \neq 0 \) and \([x]\) denotes the greatest integer function, we will analyze the function in the intervals around \( x = 1 \). ### Step 1: Define the function in intervals The greatest integer function \([x]\) takes the value of the largest integer less than or equal to \( x \). Therefore, we can define \( f(x) \) in different intervals: 1. For \( 0 < x < 1 \): \[ [x] = 0 \implies f(x) = \frac{0}{|x|} = 0 \] 2. For \( 1 \leq x < 2 \): \[ [x] = 1 \implies f(x) = \frac{1}{|x|} = \frac{1}{x} \] 3. For \( x < 0 \): \[ [x] = -1 \implies f(x) = \frac{-1}{|x|} = -\frac{1}{-x} = \frac{1}{x} \] Thus, we can summarize the function as: \[ f(x) = \begin{cases} 0 & \text{for } 0 < x < 1 \\ \frac{1}{x} & \text{for } 1 \leq x < 2 \\ \frac{1}{x} & \text{for } x < 0 \end{cases} \] ### Step 2: Check continuity at \( x = 1 \) To determine if \( f(x) \) is differentiable at \( x = 1 \), we first check its continuity at this point. - **Left-hand limit** as \( x \to 1^- \): \[ \lim_{x \to 1^-} f(x) = 0 \] - **Right-hand limit** as \( x \to 1^+ \): \[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{1}{x} = 1 \] Since the left-hand limit \( (0) \) is not equal to the right-hand limit \( (1) \), we conclude that: \[ \lim_{x \to 1} f(x) \text{ does not exist.} \] ### Step 3: Conclusion about differentiability Since \( f(x) \) is not continuous at \( x = 1 \), it cannot be differentiable at that point. Therefore, we conclude that: \[ f'(1) \text{ does not exist.} \] ### Final Answer Thus, the value of \( f'(1) \) is: \[ \text{non-existent} \] ---

To find \( f'(1) \) for the function \( f(x) = \frac{[x]}{|x|} \) where \( x \neq 0 \) and \([x]\) denotes the greatest integer function, we will analyze the function in the intervals around \( x = 1 \). ### Step 1: Define the function in intervals The greatest integer function \([x]\) takes the value of the largest integer less than or equal to \( x \). Therefore, we can define \( f(x) \) in different intervals: 1. For \( 0 < x < 1 \): \[ [x] = 0 \implies f(x) = \frac{0}{|x|} = 0 ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=[x] sin ((pi)/([x+1])) , where [.] denotes the greatest integer function, then the set of point of discontiuity of f in its domain is

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Let f(x)=|x| and g(x)=[x] , (where [.] denotes the greatest integer function) Then, (fog)'(-1) is

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the greatest integer function then f(x) is

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section I - Solved Mcqs
  1. Let f:R to R be given by f(x+y)=f(x)-f(y)+2xy+1"for all "x,y in R If f...

    Text Solution

    |

  2. If f(x)=|2-x|+(2+x), where (x)=the least integer greater than or equal...

    Text Solution

    |

  3. If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer func...

    Text Solution

    |

  4. If 4x+3|y|=5y, then y as a function of x is

    Text Solution

    |

  5. Let f(x)=log(e)|x-1|, x ne 1, then the value of f'((1)/(2)) is

    Text Solution

    |

  6. Let a function f(x) defined on [3,6] be given by f(x)={{:(,log(e)[x],3...

    Text Solution

    |

  7. If f(x)={{:(,e^(x),x lt 2),(,ax+b,x ge 2):} is differentiable for all ...

    Text Solution

    |

  8. If the function f(x) is given by f(x)={{:(,2^(1//(x-1)),x lt 1),(,ax^(...

    Text Solution

    |

  9. Let f(x)=sin x,g(x)=[x+1] and h(x)=gof(x) where [.] the greatest integ...

    Text Solution

    |

  10. If f(x)=|x-2| and g(x)=f[f(x)], then g'(x)=………… for x gt20.

    Text Solution

    |

  11. If f(x)=sgn(x)={(|x|)/x,x!=0, 0, x=0 and g(x)=f(f(x)),then at x=0,g(x)...

    Text Solution

    |

  12. Let f(x)=cos x and g(x)=[x+1],"where [.] denotes the greatest integer ...

    Text Solution

    |

  13. f(x)=min{1,cosx,1-sinx},-pilexlepi, then

    Text Solution

    |

  14. If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)...

    Text Solution

    |

  15. If f(x) = sgn(x^5), then which of the following is/are false (where sg...

    Text Solution

    |

  16. If f (x) =|x-1|and g (x) =f (f (f (x))), then g' (x) is equal to:

    Text Solution

    |

  17. If f(x)={{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}

    Text Solution

    |

  18. Let f(x)=(-1)^([x^(3)]), where [.] denotest the greatest integer funct...

    Text Solution

    |

  19. f(x)=(1)/(1-x)and f^(n)=fofof....of, then the points of discontinuitym...

    Text Solution

    |

  20. Let f(x) = [ n + p sin x], x in (0,pi), n in Z, p is a prime number an...

    Text Solution

    |