Home
Class 12
MATHS
Let f(x)=log(e)|x-1|, x ne 1, then the v...

Let `f(x)=log_(e)|x-1|, x ne 1`, then the value of `f'((1)/(2))` is

A

`-2`

B

2

C

non-existent

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( f'(\frac{1}{2}) \) for the function \( f(x) = \log_e |x - 1| \) where \( x \neq 1 \), we can follow these steps: ### Step 1: Define the function in piecewise form The function \( f(x) = \log_e |x - 1| \) can be expressed in two parts based on the value of \( x \): - For \( x > 1 \): \( f(x) = \log_e (x - 1) \) - For \( x < 1 \): \( f(x) = \log_e (1 - x) \) ### Step 2: Find the derivative of \( f(x) \) Now we will differentiate \( f(x) \) for both cases. 1. **For \( x > 1 \)**: \[ f'(x) = \frac{d}{dx} \log_e (x - 1) = \frac{1}{x - 1} \] 2. **For \( x < 1 \)**: \[ f'(x) = \frac{d}{dx} \log_e (1 - x) = \frac{-1}{1 - x} = \frac{1}{x - 1} \] Thus, the derivative \( f'(x) \) can be summarized as: \[ f'(x) = \frac{1}{x - 1} \quad \text{for all } x \neq 1 \] ### Step 3: Evaluate \( f'(\frac{1}{2}) \) Since \( \frac{1}{2} < 1 \), we use the derivative formula: \[ f'(\frac{1}{2}) = \frac{1}{\frac{1}{2} - 1} = \frac{1}{-\frac{1}{2}} = -2 \] ### Conclusion The value of \( f'(\frac{1}{2}) \) is \( -2 \).

To find the derivative \( f'(\frac{1}{2}) \) for the function \( f(x) = \log_e |x - 1| \) where \( x \neq 1 \), we can follow these steps: ### Step 1: Define the function in piecewise form The function \( f(x) = \log_e |x - 1| \) can be expressed in two parts based on the value of \( x \): - For \( x > 1 \): \( f(x) = \log_e (x - 1) \) - For \( x < 1 \): \( f(x) = \log_e (1 - x) \) ### Step 2: Find the derivative of \( f(x) \) ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

If f(x)=(log)_e((x^2+e)/(x^2+1)) , then the range of f(x)

If f'(x)=f(x)+ int_(0)^(1)f(x)dx , given f(0)=1 , then the value of f(log_(e)2) is

If f^(prime)(x)=f(x)+int_0^1f(x)dx ,gi v e nf(0)=1, then the value of f((log)_e 2) is (a) 1/(3+e) (b) (5-e)/(3-e) (c) (2+e)/(e-2) (d) none of these

Let y=f(x) satisfies (dy)/(dx)=(x+y)/(x) and f(e)=e then the value of f(1) is

"If " f(x)=int(dx)/(x^(1//3)+2) " and "f(0)=12log_(e)2, " then the value of " f(-1) " is"-.

If function f(x)=x^(2)+e^(x//2) " and " g(x)=f^(-1)(x) , then the value of g'(1) is

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

Let f(x)={(log(1+x)^(1+x)-x)/(x^2)}dot Then find the value of f(0) so that the function f is continuous at x=0.

Let f(x)={(log(1+x)^(1+x)-x)/(x^2)}dot Then find the value of f(0) so that the function f is continuous at x=0.

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section I - Solved Mcqs
  1. If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer func...

    Text Solution

    |

  2. If 4x+3|y|=5y, then y as a function of x is

    Text Solution

    |

  3. Let f(x)=log(e)|x-1|, x ne 1, then the value of f'((1)/(2)) is

    Text Solution

    |

  4. Let a function f(x) defined on [3,6] be given by f(x)={{:(,log(e)[x],3...

    Text Solution

    |

  5. If f(x)={{:(,e^(x),x lt 2),(,ax+b,x ge 2):} is differentiable for all ...

    Text Solution

    |

  6. If the function f(x) is given by f(x)={{:(,2^(1//(x-1)),x lt 1),(,ax^(...

    Text Solution

    |

  7. Let f(x)=sin x,g(x)=[x+1] and h(x)=gof(x) where [.] the greatest integ...

    Text Solution

    |

  8. If f(x)=|x-2| and g(x)=f[f(x)], then g'(x)=………… for x gt20.

    Text Solution

    |

  9. If f(x)=sgn(x)={(|x|)/x,x!=0, 0, x=0 and g(x)=f(f(x)),then at x=0,g(x)...

    Text Solution

    |

  10. Let f(x)=cos x and g(x)=[x+1],"where [.] denotes the greatest integer ...

    Text Solution

    |

  11. f(x)=min{1,cosx,1-sinx},-pilexlepi, then

    Text Solution

    |

  12. If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)...

    Text Solution

    |

  13. If f(x) = sgn(x^5), then which of the following is/are false (where sg...

    Text Solution

    |

  14. If f (x) =|x-1|and g (x) =f (f (f (x))), then g' (x) is equal to:

    Text Solution

    |

  15. If f(x)={{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}

    Text Solution

    |

  16. Let f(x)=(-1)^([x^(3)]), where [.] denotest the greatest integer funct...

    Text Solution

    |

  17. f(x)=(1)/(1-x)and f^(n)=fofof....of, then the points of discontinuitym...

    Text Solution

    |

  18. Let f(x) = [ n + p sin x], x in (0,pi), n in Z, p is a prime number an...

    Text Solution

    |

  19. Determine the values of x for which the following functions fails to b...

    Text Solution

    |

  20. Let [x] denote the greatest integer less than or equal to x and g (x) ...

    Text Solution

    |