Home
Class 12
MATHS
If the function f(x) is given by f(x)={{...

If the function f(x) is given by `f(x)={{:(,2^(1//(x-1)),x lt 1),(,ax^(2)+bx,x ge 1):}` is everywhere differentiable, then

A

a=0, b=1

B

a-0, b=0

C

a=1, b=0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous and differentiable everywhere, particularly at the point \( x = 1 \). The function is defined as follows: \[ f(x) = \begin{cases} 2^{\frac{1}{x-1}} & \text{if } x < 1 \\ ax^2 + bx & \text{if } x \geq 1 \end{cases} \] ### Step 1: Ensure Continuity at \( x = 1 \) For \( f(x) \) to be continuous at \( x = 1 \), the left-hand limit as \( x \) approaches 1 must equal the right-hand limit and the value of the function at that point. 1. **Calculate \( f(1) \)**: \[ f(1) = a(1)^2 + b(1) = a + b \] 2. **Calculate the left-hand limit**: \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} 2^{\frac{1}{x-1}} \] As \( x \to 1^- \), \( \frac{1}{x-1} \to -\infty \), hence: \[ \lim_{x \to 1^-} f(x) = 2^{-\infty} = 0 \] 3. **Calculate the right-hand limit**: \[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (ax^2 + bx) = a(1)^2 + b(1) = a + b \] Setting the left-hand limit equal to the right-hand limit gives: \[ 0 = a + b \quad \text{(Equation 1)} \] ### Step 2: Ensure Differentiability at \( x = 1 \) For \( f(x) \) to be differentiable at \( x = 1 \), the left-hand derivative must equal the right-hand derivative. 1. **Calculate the left-hand derivative**: \[ f'(x) = \frac{d}{dx} \left( 2^{\frac{1}{x-1}} \right) \] Using the chain rule: \[ f'(x) = 2^{\frac{1}{x-1}} \cdot \ln(2) \cdot \left(-\frac{1}{(x-1)^2}\right) \] Thus, the left-hand derivative at \( x = 1 \) is: \[ \lim_{x \to 1^-} f'(x) = \lim_{x \to 1^-} 2^{\frac{1}{x-1}} \cdot \frac{-\ln(2)}{(x-1)^2} \] As \( x \to 1^- \), this approaches: \[ -\infty \quad \text{(since } 2^{\frac{1}{x-1}} \to 0 \text{ and } (x-1)^2 \to 0\text{)} \] 2. **Calculate the right-hand derivative**: \[ f'(x) = \frac{d}{dx} (ax^2 + bx) = 2ax + b \] Thus, the right-hand derivative at \( x = 1 \) is: \[ f'(1) = 2a(1) + b = 2a + b \] Setting the left-hand derivative equal to the right-hand derivative gives: \[ -\infty = 2a + b \quad \text{(Equation 2)} \] ### Step 3: Solve the Equations From Equation 1: \[ a + b = 0 \implies b = -a \] Substituting \( b = -a \) into Equation 2: \[ 2a - a = 0 \implies a = 0 \] Then substituting \( a = 0 \) back into Equation 1: \[ 0 + b = 0 \implies b = 0 \] ### Conclusion The values of \( a \) and \( b \) that make the function \( f(x) \) everywhere differentiable are: \[ a = 0 \quad \text{and} \quad b = 0 \]

To solve the problem, we need to ensure that the function \( f(x) \) is continuous and differentiable everywhere, particularly at the point \( x = 1 \). The function is defined as follows: \[ f(x) = \begin{cases} 2^{\frac{1}{x-1}} & \text{if } x < 1 \\ ax^2 + bx & \text{if } x \geq 1 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

The function f(x) given by f(x)={{:(x^(4)tan""(pix)/(2),|x| lt1),(x|x|,|x| ge1):} is

A function f(x) given by f(x)={{:(x^(2)sin""(pix)/(2), |x| lt1),(x|x|,|x| ge1):}is

If f(x)={{:(,ax^(2)-b,|x|lt 1),(,(1)/(|x|),|x| ge1):} is differentiable at x=1, then

Let f(x) be a function defined by f(x)={{:(,e^(x),x lt 2),(,a+bx,x ge 2):} It f(x) is differentiably for all x in R , then

Consider the function f:R -{1} given by f (x)= (2x)/(x-1) Then f^(-1)(x) =

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

If f(x)={{:(a+tan^(-1)(x-b),,,x ge1),((x)/(2),,,xlt1):} is differentiable at x = 1, then 4a-b can be

Discuss the continuity of the function f(x)={{:(2x -1 "," x lt 1),(3x-2"," x ge 1):}

Let a and b be real numbers such that the function g(x)={{:(,-3ax^(2)-2,x lt 1),(,bx+a^(2),x ge1):} is differentiable for all x in R Then the possible value(s) of a is (are)

Draw the graph of f(x) = {{:(x^(3)","x^(2) lt 1), (x","x^(2) ge 1):}

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section I - Solved Mcqs
  1. Let a function f(x) defined on [3,6] be given by f(x)={{:(,log(e)[x],3...

    Text Solution

    |

  2. If f(x)={{:(,e^(x),x lt 2),(,ax+b,x ge 2):} is differentiable for all ...

    Text Solution

    |

  3. If the function f(x) is given by f(x)={{:(,2^(1//(x-1)),x lt 1),(,ax^(...

    Text Solution

    |

  4. Let f(x)=sin x,g(x)=[x+1] and h(x)=gof(x) where [.] the greatest integ...

    Text Solution

    |

  5. If f(x)=|x-2| and g(x)=f[f(x)], then g'(x)=………… for x gt20.

    Text Solution

    |

  6. If f(x)=sgn(x)={(|x|)/x,x!=0, 0, x=0 and g(x)=f(f(x)),then at x=0,g(x)...

    Text Solution

    |

  7. Let f(x)=cos x and g(x)=[x+1],"where [.] denotes the greatest integer ...

    Text Solution

    |

  8. f(x)=min{1,cosx,1-sinx},-pilexlepi, then

    Text Solution

    |

  9. If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)...

    Text Solution

    |

  10. If f(x) = sgn(x^5), then which of the following is/are false (where sg...

    Text Solution

    |

  11. If f (x) =|x-1|and g (x) =f (f (f (x))), then g' (x) is equal to:

    Text Solution

    |

  12. If f(x)={{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}

    Text Solution

    |

  13. Let f(x)=(-1)^([x^(3)]), where [.] denotest the greatest integer funct...

    Text Solution

    |

  14. f(x)=(1)/(1-x)and f^(n)=fofof....of, then the points of discontinuitym...

    Text Solution

    |

  15. Let f(x) = [ n + p sin x], x in (0,pi), n in Z, p is a prime number an...

    Text Solution

    |

  16. Determine the values of x for which the following functions fails to b...

    Text Solution

    |

  17. Let [x] denote the greatest integer less than or equal to x and g (x) ...

    Text Solution

    |

  18. Let f(x)= {{:((x)/(1+|x|)",", |x| ge1), ((x)/(1-|x|)",", |x| lt 1):},...

    Text Solution

    |

  19. Let f : [0, 1] rarr [0, 1] be a continuous function such that f (f (x)...

    Text Solution

    |

  20. Let f(x) be a continuous defined for 1le xle 3. if f(x) takes ra...

    Text Solution

    |