Home
Class 12
MATHS
Let f(x)=sin x,g(x)=[x+1] and h(x)=gof(x...

Let `f(x)=sin x,g(x)=[x+1] and h(x)=gof(x)` where [.] the greatest integer function. Then `h'((pi)/(2))` is

A

1

B

`-1`

C

non-existent

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \( h'(\frac{\pi}{2}) \) where \( h(x) = g(f(x)) \), we first need to understand the functions involved. 1. **Define the Functions**: - \( f(x) = \sin x \) - \( g(x) = [x + 1] \), where \([.]\) denotes the greatest integer function. - Thus, \( h(x) = g(f(x)) = g(\sin x) = [\sin x + 1] \). 2. **Evaluate \( h(\frac{\pi}{2}) \)**: - Calculate \( f(\frac{\pi}{2}) \): \[ f\left(\frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2}\right) = 1 \] - Now, substitute into \( g \): \[ h\left(\frac{\pi}{2}\right) = g(f(\frac{\pi}{2})) = g(1) = [1 + 1] = [2] = 2 \] 3. **Determine the Left-Hand Derivative (LHD)**: - The left-hand derivative at \( x = \frac{\pi}{2} \) is given by: \[ \text{LHD} = \lim_{h \to 0^-} \frac{h\left(\frac{\pi}{2} + h\right) - h\left(\frac{\pi}{2}\right)}{h} \] - For \( x < \frac{\pi}{2} \), \( \sin x < 1 \) so \( h(x) = [\sin x + 1] = 1 \). - Thus, we have: \[ \text{LHD} = \lim_{h \to 0^-} \frac{1 - 2}{h} = \lim_{h \to 0^-} \frac{-1}{h} \] - As \( h \to 0^- \), this approaches \( -\infty \). 4. **Determine the Right-Hand Derivative (RHD)**: - The right-hand derivative at \( x = \frac{\pi}{2} \) is given by: \[ \text{RHD} = \lim_{h \to 0^+} \frac{h\left(\frac{\pi}{2} + h\right) - h\left(\frac{\pi}{2}\right)}{h} \] - For \( x > \frac{\pi}{2} \), \( \sin x > 1 \) so \( h(x) = [\sin x + 1] = 2 \). - Thus, we have: \[ \text{RHD} = \lim_{h \to 0^+} \frac{2 - 2}{h} = \lim_{h \to 0^+} \frac{0}{h} = 0 \] 5. **Conclusion**: - Since LHD \(\neq\) RHD, \( h'(\frac{\pi}{2}) \) does not exist. Thus, the final answer is that \( h'(\frac{\pi}{2}) \) is **non-existent**.

To find \( h'(\frac{\pi}{2}) \) where \( h(x) = g(f(x)) \), we first need to understand the functions involved. 1. **Define the Functions**: - \( f(x) = \sin x \) - \( g(x) = [x + 1] \), where \([.]\) denotes the greatest integer function. - Thus, \( h(x) = g(f(x)) = g(\sin x) = [\sin x + 1] \). 2. **Evaluate \( h(\frac{\pi}{2}) \)**: ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = [x] , g(x)= |x| and f{g(x)} = h(x) ,where [.] is the greatest integer function . Then h(-1) is

Let f(x)=cos x and g(x)=[x+1],"where [.] denotes the greatest integer function, Then (gof)' (pi//2) is

Let f(x) = [sin ^(4)x] then ( where [.] represents the greatest integer function ).

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

Let f(x)=|x| and g(x)=[x] , (where [.] denotes the greatest integer function) Then, (fog)'(-1) is

Let f(x)=x/(1+x^2) and g(x)=(e^(-x))/(1+[x]) (where [.] denote greatest integer function), then

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Let [x] be the greatest integer function f(x)=(sin(1/4(pi[x]))/([x])) is

f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer function then

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section I - Solved Mcqs
  1. If f(x)={{:(,e^(x),x lt 2),(,ax+b,x ge 2):} is differentiable for all ...

    Text Solution

    |

  2. If the function f(x) is given by f(x)={{:(,2^(1//(x-1)),x lt 1),(,ax^(...

    Text Solution

    |

  3. Let f(x)=sin x,g(x)=[x+1] and h(x)=gof(x) where [.] the greatest integ...

    Text Solution

    |

  4. If f(x)=|x-2| and g(x)=f[f(x)], then g'(x)=………… for x gt20.

    Text Solution

    |

  5. If f(x)=sgn(x)={(|x|)/x,x!=0, 0, x=0 and g(x)=f(f(x)),then at x=0,g(x)...

    Text Solution

    |

  6. Let f(x)=cos x and g(x)=[x+1],"where [.] denotes the greatest integer ...

    Text Solution

    |

  7. f(x)=min{1,cosx,1-sinx},-pilexlepi, then

    Text Solution

    |

  8. If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)...

    Text Solution

    |

  9. If f(x) = sgn(x^5), then which of the following is/are false (where sg...

    Text Solution

    |

  10. If f (x) =|x-1|and g (x) =f (f (f (x))), then g' (x) is equal to:

    Text Solution

    |

  11. If f(x)={{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}

    Text Solution

    |

  12. Let f(x)=(-1)^([x^(3)]), where [.] denotest the greatest integer funct...

    Text Solution

    |

  13. f(x)=(1)/(1-x)and f^(n)=fofof....of, then the points of discontinuitym...

    Text Solution

    |

  14. Let f(x) = [ n + p sin x], x in (0,pi), n in Z, p is a prime number an...

    Text Solution

    |

  15. Determine the values of x for which the following functions fails to b...

    Text Solution

    |

  16. Let [x] denote the greatest integer less than or equal to x and g (x) ...

    Text Solution

    |

  17. Let f(x)= {{:((x)/(1+|x|)",", |x| ge1), ((x)/(1-|x|)",", |x| lt 1):},...

    Text Solution

    |

  18. Let f : [0, 1] rarr [0, 1] be a continuous function such that f (f (x)...

    Text Solution

    |

  19. Let f(x) be a continuous defined for 1le xle 3. if f(x) takes ra...

    Text Solution

    |

  20. Let f(x) and g(x) be two equal real function such that f(x)=(x)/(|x|) ...

    Text Solution

    |