Home
Class 12
MATHS
If f(x)=sgn(x)={(|x|)/x,x!=0, 0, x=0 and...

If `f(x)=sgn(x)={(|x|)/x,x!=0, 0, x=0 and g(x)=f(f(x)),`then at `x=0,g(x)` is

A

continuous and differentiable

B

continuous but not differentiable

C

differentiable but not continuous

D

neither continuous nor differentiable

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the functions \( f(x) \) and \( g(x) \) step by step. ### Step 1: Define the function \( f(x) \) The function \( f(x) \) is defined as follows: \[ f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases} \] ### Step 2: Determine \( g(x) = f(f(x)) \) Now, we need to find \( g(x) = f(f(x)) \). We will evaluate \( f(f(x)) \) for three cases: \( x > 0 \), \( x = 0 \), and \( x < 0 \). 1. **For \( x > 0 \)**: - \( f(x) = 1 \) - Therefore, \( g(x) = f(f(x)) = f(1) = 1 \) 2. **For \( x = 0 \)**: - \( f(x) = 0 \) - Therefore, \( g(x) = f(f(x)) = f(0) = 0 \) 3. **For \( x < 0 \)**: - \( f(x) = -1 \) - Therefore, \( g(x) = f(f(x)) = f(-1) = -1 \) ### Step 3: Summarize the function \( g(x) \) Now we can summarize \( g(x) \): \[ g(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases} \] ### Step 4: Check continuity at \( x = 0 \) To check if \( g(x) \) is continuous at \( x = 0 \), we need to see if: \[ \lim_{x \to 0^-} g(x) = g(0) = \lim_{x \to 0^+} g(x) \] - \( \lim_{x \to 0^-} g(x) = -1 \) - \( g(0) = 0 \) - \( \lim_{x \to 0^+} g(x) = 1 \) Since \( -1 \neq 0 \neq 1 \), \( g(x) \) is not continuous at \( x = 0 \). ### Step 5: Check differentiability at \( x = 0 \) A function must be continuous at a point to be differentiable there. Since \( g(x) \) is not continuous at \( x = 0 \), it cannot be differentiable at that point. ### Conclusion Thus, at \( x = 0 \), \( g(x) \) is neither continuous nor differentiable. ### Final Answer At \( x = 0 \), \( g(x) \) is neither continuous nor differentiable. ---

To solve the problem, we need to analyze the functions \( f(x) \) and \( g(x) \) step by step. ### Step 1: Define the function \( f(x) \) The function \( f(x) \) is defined as follows: \[ f(x) = \begin{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(-1, x lt 0),(0, x=0 and g(x)=x(1-x^(2))", then"),(1, x gt 0):}

Let f(x)={x+1,x >0, 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

If f(x)=sgn(x)" and "g(x)=x^(3) ,then prove that lim_(xto0) f(x).g(x) exists though lim_(xto0) f(x) does not exist.

Let f(x) and g(x) be two equal real function such that f(x)=(x)/(|x|) g(x), x ne 0 If g(0)=g'(0)=0 and f(x) is continuous at x=0, then f'(0) is

If f(x)=1/x ,g(x)=1/(x^2), and h(x)=x^2 , then (A) f(g(x))=x^2,x!=0,h(g(x))=1/(x^2) (B) h(g(x))=1/(x^2),x!=0,fog(x)=x^2 (C) fog(x)=x^2,x!=0,h(g(x))=(g(x))^2,x!=0 (D) none of these

Let f(x)={x+1,x >0 \n 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

If f(x)={{:(x^(2),xle0),(x,xgt0):} and g(x)=-absx,x inR, then find fog .

If f(x)=1/x and g(x) = 0 then fog is

If f(x) is a quadratic expression such that f(x)gt 0 AA x in R , and if g(x)=f(x)+f'(x)+f''(x) , then prove that g(x)gt 0 AA x in R .

If f(x)=e^(x)g(x),g(0)=2,g'(0)=1, then f'(0) is

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section I - Solved Mcqs
  1. Let f(x)=sin x,g(x)=[x+1] and h(x)=gof(x) where [.] the greatest integ...

    Text Solution

    |

  2. If f(x)=|x-2| and g(x)=f[f(x)], then g'(x)=………… for x gt20.

    Text Solution

    |

  3. If f(x)=sgn(x)={(|x|)/x,x!=0, 0, x=0 and g(x)=f(f(x)),then at x=0,g(x)...

    Text Solution

    |

  4. Let f(x)=cos x and g(x)=[x+1],"where [.] denotes the greatest integer ...

    Text Solution

    |

  5. f(x)=min{1,cosx,1-sinx},-pilexlepi, then

    Text Solution

    |

  6. If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)...

    Text Solution

    |

  7. If f(x) = sgn(x^5), then which of the following is/are false (where sg...

    Text Solution

    |

  8. If f (x) =|x-1|and g (x) =f (f (f (x))), then g' (x) is equal to:

    Text Solution

    |

  9. If f(x)={{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}

    Text Solution

    |

  10. Let f(x)=(-1)^([x^(3)]), where [.] denotest the greatest integer funct...

    Text Solution

    |

  11. f(x)=(1)/(1-x)and f^(n)=fofof....of, then the points of discontinuitym...

    Text Solution

    |

  12. Let f(x) = [ n + p sin x], x in (0,pi), n in Z, p is a prime number an...

    Text Solution

    |

  13. Determine the values of x for which the following functions fails to b...

    Text Solution

    |

  14. Let [x] denote the greatest integer less than or equal to x and g (x) ...

    Text Solution

    |

  15. Let f(x)= {{:((x)/(1+|x|)",", |x| ge1), ((x)/(1-|x|)",", |x| lt 1):},...

    Text Solution

    |

  16. Let f : [0, 1] rarr [0, 1] be a continuous function such that f (f (x)...

    Text Solution

    |

  17. Let f(x) be a continuous defined for 1le xle 3. if f(x) takes ra...

    Text Solution

    |

  18. Let f(x) and g(x) be two equal real function such that f(x)=(x)/(|x|) ...

    Text Solution

    |

  19. If f(x) is periodic function with period, T, then

    Text Solution

    |

  20. If f(x)={{:(,(e^(x[x])-1)/(x+[x]),x ne 0),(,1,x=0):} then

    Text Solution

    |