Home
Class 12
MATHS
Let f(x)=cos x and g(x)=[x+1],"where [.]...

Let `f(x)=cos x and g(x)=[x+1],"where [.]` denotes the greatest integer function, Then `(gof)' (pi//2)` is

A

0

B

1

C

`-1`

D

non-existent

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the composite function \( (g \circ f)' \left( \frac{\pi}{2} \right) \), where \( f(x) = \cos x \) and \( g(x) = [x + 1] \) (the greatest integer function). ### Step 1: Define the Composite Function The composite function \( g \circ f \) can be expressed as: \[ g(f(x)) = g(\cos x) = [\cos x + 1] \] This means we are taking the cosine of \( x \) and then applying the greatest integer function to \( \cos x + 1 \). ### Step 2: Evaluate \( f \left( \frac{\pi}{2} \right) \) First, we need to evaluate \( f \left( \frac{\pi}{2} \right) \): \[ f \left( \frac{\pi}{2} \right) = \cos \left( \frac{\pi}{2} \right) = 0 \] ### Step 3: Evaluate \( g(f(\frac{\pi}{2})) \) Now, we substitute \( f \left( \frac{\pi}{2} \right) \) into \( g \): \[ g(f(\frac{\pi}{2})) = g(0) = [0 + 1] = [1] = 1 \] ### Step 4: Check Continuity of \( g(f(x)) \) at \( x = \frac{\pi}{2} \) To find \( (g \circ f)' \left( \frac{\pi}{2} \right) \), we need to check the continuity of \( g(f(x)) \) at \( x = \frac{\pi}{2} \). The function \( g(x) = [x + 1] \) is piecewise constant except at integer points. ### Step 5: Evaluate \( \cos x + 1 \) near \( x = \frac{\pi}{2} \) As \( x \) approaches \( \frac{\pi}{2} \), \( \cos x \) approaches \( 0 \). Therefore, \( \cos x + 1 \) approaches \( 1 \). ### Step 6: Determine the Behavior of \( g(f(x)) \) Since \( g(x) \) is constant around \( x = 1 \) (except at integer points), we find: \[ g(f(x)) = g(\cos x) = [\cos x + 1] = 1 \text{ for } x \text{ near } \frac{\pi}{2} \] ### Step 7: Find the Derivative Since \( g(f(x)) \) is constant (equal to 1) in a neighborhood around \( x = \frac{\pi}{2} \), its derivative is: \[ (g \circ f)' \left( \frac{\pi}{2} \right) = 0 \] ### Final Answer Thus, the value of \( (g \circ f)' \left( \frac{\pi}{2} \right) \) is: \[ \boxed{0} \]

To solve the problem, we need to find the derivative of the composite function \( (g \circ f)' \left( \frac{\pi}{2} \right) \), where \( f(x) = \cos x \) and \( g(x) = [x + 1] \) (the greatest integer function). ### Step 1: Define the Composite Function The composite function \( g \circ f \) can be expressed as: \[ g(f(x)) = g(\cos x) = [\cos x + 1] \] This means we are taking the cosine of \( x \) and then applying the greatest integer function to \( \cos x + 1 \). ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=|x| and g(x)=[x] , (where [.] denotes the greatest integer function) Then, (fog)'(-1) is

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

Let f(x) =|x| and g(x)=|x| where [.] denotes the greatest function. Then, (fog)' (-2) is

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section I - Solved Mcqs
  1. If f(x)=|x-2| and g(x)=f[f(x)], then g'(x)=………… for x gt20.

    Text Solution

    |

  2. If f(x)=sgn(x)={(|x|)/x,x!=0, 0, x=0 and g(x)=f(f(x)),then at x=0,g(x)...

    Text Solution

    |

  3. Let f(x)=cos x and g(x)=[x+1],"where [.] denotes the greatest integer ...

    Text Solution

    |

  4. f(x)=min{1,cosx,1-sinx},-pilexlepi, then

    Text Solution

    |

  5. If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)...

    Text Solution

    |

  6. If f(x) = sgn(x^5), then which of the following is/are false (where sg...

    Text Solution

    |

  7. If f (x) =|x-1|and g (x) =f (f (f (x))), then g' (x) is equal to:

    Text Solution

    |

  8. If f(x)={{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}

    Text Solution

    |

  9. Let f(x)=(-1)^([x^(3)]), where [.] denotest the greatest integer funct...

    Text Solution

    |

  10. f(x)=(1)/(1-x)and f^(n)=fofof....of, then the points of discontinuitym...

    Text Solution

    |

  11. Let f(x) = [ n + p sin x], x in (0,pi), n in Z, p is a prime number an...

    Text Solution

    |

  12. Determine the values of x for which the following functions fails to b...

    Text Solution

    |

  13. Let [x] denote the greatest integer less than or equal to x and g (x) ...

    Text Solution

    |

  14. Let f(x)= {{:((x)/(1+|x|)",", |x| ge1), ((x)/(1-|x|)",", |x| lt 1):},...

    Text Solution

    |

  15. Let f : [0, 1] rarr [0, 1] be a continuous function such that f (f (x)...

    Text Solution

    |

  16. Let f(x) be a continuous defined for 1le xle 3. if f(x) takes ra...

    Text Solution

    |

  17. Let f(x) and g(x) be two equal real function such that f(x)=(x)/(|x|) ...

    Text Solution

    |

  18. If f(x) is periodic function with period, T, then

    Text Solution

    |

  19. If f(x)={{:(,(e^(x[x])-1)/(x+[x]),x ne 0),(,1,x=0):} then

    Text Solution

    |

  20. Let f(x) be defined on [-2,2] and be given by f(x)={(-1",",-2 le x l...

    Text Solution

    |