Home
Class 12
MATHS
If [.] denotes the greatest integer func...

If [.] denotes the greatest integer function, then `f(x)=[x]+[x+(1)/(2)]`

A

is continuous at `x=(1)/(2)`

B

is discontinuous at `x=(1)/(2)`

C

`underset(x to ((1)/(2)))lim f(x)=2`

D

`underset(x to ((1)/(2))^(-))lim f(x)=1`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the function \( f(x) = [x] + [x + \frac{1}{2}] \) at \( x = \frac{1}{2} \), we will analyze the function in the intervals around \( x = \frac{1}{2} \). ### Step 1: Define the intervals We will evaluate the function in two intervals: 1. \( 0 \leq x < \frac{1}{2} \) 2. \( \frac{1}{2} \leq x < 1 \) ### Step 2: Evaluate \( f(x) \) for \( 0 \leq x < \frac{1}{2} \) In this interval, the greatest integer function \( [x] \) will be: - \( [x] = 0 \) (since \( x \) is less than \( \frac{1}{2} \)) Now, evaluate \( [x + \frac{1}{2}] \): - Since \( x + \frac{1}{2} < 1 \) for \( x < \frac{1}{2} \), we have \( [x + \frac{1}{2}] = 0 \). Thus, for \( 0 \leq x < \frac{1}{2} \): \[ f(x) = [x] + [x + \frac{1}{2}] = 0 + 0 = 0 \] ### Step 3: Evaluate \( f(x) \) for \( \frac{1}{2} \leq x < 1 \) In this interval, the greatest integer function \( [x] \) will be: - \( [x] = 0 \) (since \( x \) is still less than \( 1 \)) Now, evaluate \( [x + \frac{1}{2}] \): - For \( \frac{1}{2} \leq x < 1 \), \( x + \frac{1}{2} \) will be in the range \( [1, 1.5) \), thus \( [x + \frac{1}{2}] = 1 \). Therefore, for \( \frac{1}{2} \leq x < 1 \): \[ f(x) = [x] + [x + \frac{1}{2}] = 0 + 1 = 1 \] ### Step 4: Check continuity at \( x = \frac{1}{2} \) To check the continuity at \( x = \frac{1}{2} \), we need to find: - \( \lim_{x \to \frac{1}{2}^-} f(x) \) - \( \lim_{x \to \frac{1}{2}^+} f(x) \) - \( f\left(\frac{1}{2}\right) \) From our evaluations: - \( \lim_{x \to \frac{1}{2}^-} f(x) = 0 \) - \( \lim_{x \to \frac{1}{2}^+} f(x) = 1 \) Since these two limits are not equal: \[ \lim_{x \to \frac{1}{2}^-} f(x) \neq \lim_{x \to \frac{1}{2}^+} f(x) \] Thus, \( f(x) \) is not continuous at \( x = \frac{1}{2} \). ### Final Result The function \( f(x) \) is not continuous at \( x = \frac{1}{2} \). ---

To determine the continuity of the function \( f(x) = [x] + [x + \frac{1}{2}] \) at \( x = \frac{1}{2} \), we will analyze the function in the intervals around \( x = \frac{1}{2} \). ### Step 1: Define the intervals We will evaluate the function in two intervals: 1. \( 0 \leq x < \frac{1}{2} \) 2. \( \frac{1}{2} \leq x < 1 \) ### Step 2: Evaluate \( f(x) \) for \( 0 \leq x < \frac{1}{2} \) ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

If f: R to R is defined by f(x)=x-[x]-(1)/(2) for all x in R , where [x] denotes the greatest integer function, then {x in R: f(x)=(1)/(2)} is equal to

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the greatest integer function then f(x) is

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is

Which of the following function is/are periodic? (a)f(x)={1,x is rational 0,x is irrational (b)f(x)={x-[x];2n

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section I - Solved Mcqs
  1. Let f(x)=cos x and g(x)=[x+1],"where [.] denotes the greatest integer ...

    Text Solution

    |

  2. f(x)=min{1,cosx,1-sinx},-pilexlepi, then

    Text Solution

    |

  3. If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)...

    Text Solution

    |

  4. If f(x) = sgn(x^5), then which of the following is/are false (where sg...

    Text Solution

    |

  5. If f (x) =|x-1|and g (x) =f (f (f (x))), then g' (x) is equal to:

    Text Solution

    |

  6. If f(x)={{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}

    Text Solution

    |

  7. Let f(x)=(-1)^([x^(3)]), where [.] denotest the greatest integer funct...

    Text Solution

    |

  8. f(x)=(1)/(1-x)and f^(n)=fofof....of, then the points of discontinuitym...

    Text Solution

    |

  9. Let f(x) = [ n + p sin x], x in (0,pi), n in Z, p is a prime number an...

    Text Solution

    |

  10. Determine the values of x for which the following functions fails to b...

    Text Solution

    |

  11. Let [x] denote the greatest integer less than or equal to x and g (x) ...

    Text Solution

    |

  12. Let f(x)= {{:((x)/(1+|x|)",", |x| ge1), ((x)/(1-|x|)",", |x| lt 1):},...

    Text Solution

    |

  13. Let f : [0, 1] rarr [0, 1] be a continuous function such that f (f (x)...

    Text Solution

    |

  14. Let f(x) be a continuous defined for 1le xle 3. if f(x) takes ra...

    Text Solution

    |

  15. Let f(x) and g(x) be two equal real function such that f(x)=(x)/(|x|) ...

    Text Solution

    |

  16. If f(x) is periodic function with period, T, then

    Text Solution

    |

  17. If f(x)={{:(,(e^(x[x])-1)/(x+[x]),x ne 0),(,1,x=0):} then

    Text Solution

    |

  18. Let f(x) be defined on [-2,2] and be given by f(x)={(-1",",-2 le x l...

    Text Solution

    |

  19. Check the continuity of f(x) = {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+...

    Text Solution

    |

  20. If f(x)={{:(,x[x], 0 le x lt 2),(,(x-1)[x], 2 le x lt 3):} where [.] d...

    Text Solution

    |