Home
Class 12
MATHS
If f(x)={{:(,(1)/(x)-(2)/(e^(2x)-1),x ne...

If f(x)=`{{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}`

A

f(x) is differentiable at x=0

B

f(x) is not differentiable at x=0

C

`f'(0)=(1)/(3)`

D

f(x) is continuous but not differenitable at x=0

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity and differentiability of the function \[ f(x) = \begin{cases} \frac{1}{x} - \frac{2}{e^{2x} - 1} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases} \] we will follow these steps: ### Step 1: Check Continuity at \( x = 0 \) To check if \( f(x) \) is continuous at \( x = 0 \), we need to evaluate the limit of \( f(x) \) as \( x \) approaches 0 and compare it to \( f(0) \). \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \left( \frac{1}{x} - \frac{2}{e^{2x} - 1} \right) \] ### Step 2: Simplify the Limit Expression To simplify the limit, we can find a common denominator: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{(e^{2x} - 1) - 2x}{x(e^{2x} - 1)} \] ### Step 3: Expand \( e^{2x} \) Using Taylor Series Using the Taylor series expansion for \( e^{2x} \): \[ e^{2x} = 1 + 2x + \frac{(2x)^2}{2!} + \frac{(2x)^3}{3!} + \ldots = 1 + 2x + 2x^2 + \frac{4x^3}{6} + \ldots \] Thus, \[ e^{2x} - 1 = 2x + 2x^2 + \frac{4x^3}{6} + \ldots \] ### Step 4: Substitute Back into the Limit Now substituting back into our limit expression: \[ \lim_{x \to 0} \frac{(2x + 2x^2 + \ldots) - 2x}{x(2x + 2x^2 + \ldots)} = \lim_{x \to 0} \frac{2x^2 + \ldots}{x(2x + 2x^2 + \ldots)} \] ### Step 5: Cancel Terms and Evaluate the Limit Cancel \( x \) from numerator and denominator: \[ = \lim_{x \to 0} \frac{2x + \ldots}{2 + 2x + \ldots} \] As \( x \to 0 \), this simplifies to: \[ = \frac{0}{2} = 0 \] ### Step 6: Compare with \( f(0) \) Since \( f(0) = 1 \) and \( \lim_{x \to 0} f(x) = 0 \), we conclude that: \[ \lim_{x \to 0} f(x) \neq f(0) \] Thus, \( f(x) \) is **not continuous** at \( x = 0 \). ### Step 7: Check Differentiability at \( x = 0 \) Since \( f(x) \) is not continuous at \( x = 0 \), it cannot be differentiable at that point. However, for completeness, we can check the left-hand derivative (LHD) and right-hand derivative (RHD). **Left-Hand Derivative (LHD):** \[ \text{LHD} = \lim_{h \to 0^-} \frac{f(0) - f(-h)}{-h} = \lim_{h \to 0^-} \frac{1 - \left( \frac{1}{-h} - \frac{2}{e^{-2h} - 1} \right)}{-h} \] **Right-Hand Derivative (RHD):** \[ \text{RHD} = \lim_{h \to 0^+} \frac{f(0) - f(h)}{-h} = \lim_{h \to 0^+} \frac{1 - \left( \frac{1}{h} - \frac{2}{e^{2h} - 1} \right)}{-h} \] Both derivatives will yield different results, confirming that \( f(x) \) is not differentiable at \( x = 0 \). ### Conclusion The function \( f(x) \) is neither continuous nor differentiable at \( x = 0 \). ---

To determine the continuity and differentiability of the function \[ f(x) = \begin{cases} \frac{1}{x} - \frac{2}{e^{2x} - 1} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(,(e^(x[x])-1)/(x+[x]),x ne 0),(,1,x=0):} then

If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

If f(x)={{:(,x^(2)sin((1)/(x)),x ne 0),(,0, x=0):} , then

If f(x)={{:(,x^(m)sin((1)/(x)),x ne 0),(,0,x=0):} is a continous at x=0, then

If f(x)={{:((e^((2)/(x))-1)/(e^((2)/(x))+1),:,x ne 0),(0,:,x=0):} , then f(x) is

On the interval I=[-2,2] , the function f(x)={{:(,(x+1)e^(-((1)/(|x|)+(1)/(x))),x ne 0),(,0,x=0):}

Check the continuity of f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5, if x = 0):} at x = 0 .

Check the continuity of f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section I - Solved Mcqs
  1. If f(x) = sgn(x^5), then which of the following is/are false (where sg...

    Text Solution

    |

  2. If f (x) =|x-1|and g (x) =f (f (f (x))), then g' (x) is equal to:

    Text Solution

    |

  3. If f(x)={{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}

    Text Solution

    |

  4. Let f(x)=(-1)^([x^(3)]), where [.] denotest the greatest integer funct...

    Text Solution

    |

  5. f(x)=(1)/(1-x)and f^(n)=fofof....of, then the points of discontinuitym...

    Text Solution

    |

  6. Let f(x) = [ n + p sin x], x in (0,pi), n in Z, p is a prime number an...

    Text Solution

    |

  7. Determine the values of x for which the following functions fails to b...

    Text Solution

    |

  8. Let [x] denote the greatest integer less than or equal to x and g (x) ...

    Text Solution

    |

  9. Let f(x)= {{:((x)/(1+|x|)",", |x| ge1), ((x)/(1-|x|)",", |x| lt 1):},...

    Text Solution

    |

  10. Let f : [0, 1] rarr [0, 1] be a continuous function such that f (f (x)...

    Text Solution

    |

  11. Let f(x) be a continuous defined for 1le xle 3. if f(x) takes ra...

    Text Solution

    |

  12. Let f(x) and g(x) be two equal real function such that f(x)=(x)/(|x|) ...

    Text Solution

    |

  13. If f(x) is periodic function with period, T, then

    Text Solution

    |

  14. If f(x)={{:(,(e^(x[x])-1)/(x+[x]),x ne 0),(,1,x=0):} then

    Text Solution

    |

  15. Let f(x) be defined on [-2,2] and be given by f(x)={(-1",",-2 le x l...

    Text Solution

    |

  16. Check the continuity of f(x) = {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+...

    Text Solution

    |

  17. If f(x)={{:(,x[x], 0 le x lt 2),(,(x-1)[x], 2 le x lt 3):} where [.] d...

    Text Solution

    |

  18. If f(x)={{:(,4,-3lt x lt -1),(,5+x,-1le x lt 0),(,5-x,0 le x lt 2),(,x...

    Text Solution

    |

  19. If f(x)={{:(,(x-a)^(n)cos ((1)/(x-a)), x ne a),(,0,x=a):} then at x=...

    Text Solution

    |

  20. Let f(x) and g(x) be two functions given by f(x)=-1|x-1|,-1 le x le 3 ...

    Text Solution

    |