Home
Class 12
MATHS
Let [x] denote the greatest integer less...

Let [x] denote the greatest integer less than or equal to x and g (x) be given by`g(x)={{:(,[f(x)],x in (0","pi//2) uu (pi//2","pi)),(,3,x=(pi)/(2)):}`
`"where", f(x)=(2(sin x-sin^(n)x)+|sinx-sin^(n)x|)/(2(sinx-sin^(n)x)-|sinx-sin^(n)x|),n in R^(+)` then at `x=(pi)/(2),g(x)`, is

A

continuous and differentiable when `n gt 1`

B

continuous and differentiable when `0 lt n lt 1`

C

continuous but not differentiable when `n gt 1`

D

continuous but not differentiable when `0 lt n lt 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( g(x) \) given by the piecewise definition and the function \( f(x) \) defined in terms of sine functions. We will evaluate \( g(x) \) at \( x = \frac{\pi}{2} \). ### Step 1: Analyze the function \( f(x) \) The function \( f(x) \) is given by: \[ f(x) = \frac{2(\sin x - \sin^n x) + |\sin x - \sin^n x|}{2(\sin x - \sin^n x) - |\sin x - \sin^n x|} \] To evaluate \( f(x) \) at \( x = \frac{\pi}{2} \): \[ \sin\left(\frac{\pi}{2}\right) = 1 \quad \text{and} \quad \sin^n\left(\frac{\pi}{2}\right) = 1^n = 1 \] Thus, we have: \[ \sin\left(\frac{\pi}{2}\right) - \sin^n\left(\frac{\pi}{2}\right) = 1 - 1 = 0 \] ### Step 2: Evaluate \( f\left(\frac{\pi}{2}\right) \) Substituting into \( f(x) \): \[ f\left(\frac{\pi}{2}\right) = \frac{2(0) + |0|}{2(0) - |0|} = \frac{0}{0} \] This is an indeterminate form, so we need to analyze the limit as \( x \) approaches \( \frac{\pi}{2} \). ### Step 3: Analyze the limit of \( f(x) \) as \( x \to \frac{\pi}{2} \) We will consider the behavior of \( \sin x - \sin^n x \) as \( x \) approaches \( \frac{\pi}{2} \). Using L'Hôpital's Rule, we differentiate the numerator and denominator with respect to \( x \): 1. **Numerator:** \[ \frac{d}{dx}[2(\sin x - \sin^n x) + |\sin x - \sin^n x|] \] 2. **Denominator:** \[ \frac{d}{dx}[2(\sin x - \sin^n x) - |\sin x - \sin^n x|] \] Calculating these derivatives will help us find the limit. ### Step 4: Determine the value of \( g\left(\frac{\pi}{2}\right) \) Now, we know that \( g(x) \) is defined piecewise. For \( x = \frac{\pi}{2} \): \[ g\left(\frac{\pi}{2}\right) = 3 \quad \text{(as given in the piecewise definition)} \] ### Step 5: Find \( [g\left(\frac{\pi}{2}\right)] \) Since \( g\left(\frac{\pi}{2}\right) = 3 \), we find the greatest integer less than or equal to \( g\left(\frac{\pi}{2}\right) \): \[ [g\left(\frac{\pi}{2}\right)] = [3] = 3 \] ### Final Answer Thus, the final answer is: \[ \boxed{3} \]

To solve the problem, we need to analyze the function \( g(x) \) given by the piecewise definition and the function \( f(x) \) defined in terms of sine functions. We will evaluate \( g(x) \) at \( x = \frac{\pi}{2} \). ### Step 1: Analyze the function \( f(x) \) The function \( f(x) \) is given by: \[ f(x) = \frac{2(\sin x - \sin^n x) + |\sin x - \sin^n x|}{2(\sin x - \sin^n x) - |\sin x - \sin^n x|} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

Let [x] denotes the greatest integer less than or equal to x. If f(x) =[x sin pi x] , then f(x) is

Solve |sin3x+sinx|+|sin3x-sinx|=sqrt(3), -pi/2 lt theta lt pi/2

f(x) = sinx - sin2x in [0,pi]

If f(x)= =|{:(sinx+sin2x+sin3x,sin2x,sin3x),(3+4sinx,3,4sinx),(1+sinx,sinx,1):}| then the value of int_(0)^(pi//2) f(x)dx , is

For x in ((-pi)/(2),(pi)/(2)) , the range of values of values of f(x)=2 +sinx+sin^(3)x+sin^(5)x…..oo

If f(x)=sin[pi^2]x+sin[-pi^2]x , where [x] denotes the greatest integer less than or equal to A. f(pi//2)=1 B. f(pi)=2 C. f(pi//4)=-1 D. none of these

Let f(x)=[cosx+ sin x], 0 lt x lt 2pi , where [x] denotes the greatest integer less than or equal to x. The number of points of discontinuity of f(x) is

If f(x)=sin{(pi)/(3)[x]-x^(2)}" for "2ltxlt3 and [x] denotes the greatest integer less than or equal to x, then f'"("sqrt(pi//3)")" is equal to

If f(x)=sin{(pi)/(3)[x]-x^(2)}" for "2ltxlt3 and [x] denotes the greatest integer less than or equal to x, then f'"("sqrt(pi//3)")" is equal to

int_(0)^(pi//2)sinx sin2x sin3x sin 4x dx=

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section I - Solved Mcqs
  1. Let f(x) = [ n + p sin x], x in (0,pi), n in Z, p is a prime number an...

    Text Solution

    |

  2. Determine the values of x for which the following functions fails to b...

    Text Solution

    |

  3. Let [x] denote the greatest integer less than or equal to x and g (x) ...

    Text Solution

    |

  4. Let f(x)= {{:((x)/(1+|x|)",", |x| ge1), ((x)/(1-|x|)",", |x| lt 1):},...

    Text Solution

    |

  5. Let f : [0, 1] rarr [0, 1] be a continuous function such that f (f (x)...

    Text Solution

    |

  6. Let f(x) be a continuous defined for 1le xle 3. if f(x) takes ra...

    Text Solution

    |

  7. Let f(x) and g(x) be two equal real function such that f(x)=(x)/(|x|) ...

    Text Solution

    |

  8. If f(x) is periodic function with period, T, then

    Text Solution

    |

  9. If f(x)={{:(,(e^(x[x])-1)/(x+[x]),x ne 0),(,1,x=0):} then

    Text Solution

    |

  10. Let f(x) be defined on [-2,2] and be given by f(x)={(-1",",-2 le x l...

    Text Solution

    |

  11. Check the continuity of f(x) = {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+...

    Text Solution

    |

  12. If f(x)={{:(,x[x], 0 le x lt 2),(,(x-1)[x], 2 le x lt 3):} where [.] d...

    Text Solution

    |

  13. If f(x)={{:(,4,-3lt x lt -1),(,5+x,-1le x lt 0),(,5-x,0 le x lt 2),(,x...

    Text Solution

    |

  14. If f(x)={{:(,(x-a)^(n)cos ((1)/(x-a)), x ne a),(,0,x=a):} then at x=...

    Text Solution

    |

  15. Let f(x) and g(x) be two functions given by f(x)=-1|x-1|,-1 le x le 3 ...

    Text Solution

    |

  16. Let y=f(x) be definded parametrically as y=t^(2)+t|t|,x=2t-|t|, t in...

    Text Solution

    |

  17. Let f(x) be a function defined as f(x)={{:(,int(0)^(x)(3+|t-2|),"if "x...

    Text Solution

    |

  18. If a function y=f(x) is defined as y=(1)/(t^(2)-t-6)and t=(1)/(x-2), t...

    Text Solution

    |

  19. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  20. If f(x) = underset(r = 1)overset(n)(sum)a(r)|x|^(r), where a(i) s are ...

    Text Solution

    |