Home
Class 12
MATHS
If f(x)={{:(,(e^(x[x])-1)/(x+[x]),x ne 0...

If `f(x)={{:(,(e^(x[x])-1)/(x+[x]),x ne 0),(,1,x=0):}` then

A

`underset(x to 0^(+))lim f(x)=-1`

B

`underset(x to 0^(-))lim f(x)=(1)/(e)-1`

C

f(x) is continuous at x=0

D

f(x) is discontinuous at x=0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function given: \[ f(x) = \begin{cases} \frac{e^{x[x]} - 1}{x + [x]} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases} \] where \([x]\) denotes the greatest integer function (or floor function) of \(x\). ### Step 1: Find the Left-Hand Limit (LHL) as \(x\) approaches 0 from the left For \(x < 0\), \([x] = -1\) (since the greatest integer less than any negative number is one less than that number). Thus, we can rewrite \(f(x)\): \[ f(x) = \frac{e^{x(-1)} - 1}{x - 1} = \frac{e^{-x} - 1}{x - 1} \] Now, we need to find: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{e^{-x} - 1}{x - 1} \] ### Step 2: Calculate the limit As \(x\) approaches 0 from the left: \[ \lim_{x \to 0^-} f(x) = \frac{e^{0} - 1}{0 - 1} = \frac{1 - 1}{-1} = \frac{0}{-1} = 0 \] ### Step 3: Find the Right-Hand Limit (RHL) as \(x\) approaches 0 from the right For \(x > 0\), \([x] = 0\). Thus, we can rewrite \(f(x)\): \[ f(x) = \frac{e^{x(0)} - 1}{x + 0} = \frac{1 - 1}{x} = 0 \] Now, we need to find: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{e^{0} - 1}{x} = \frac{1 - 1}{0} = 0 \] ### Step 4: Check the value of \(f(0)\) From the definition of the function, we know: \[ f(0) = 1 \] ### Step 5: Determine continuity at \(x = 0\) For \(f(x)\) to be continuous at \(x = 0\), the following must hold: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0) \] From our calculations: - \(\lim_{x \to 0^-} f(x) = 0\) - \(\lim_{x \to 0^+} f(x) = 0\) - \(f(0) = 1\) Since \(0 \neq 1\), the function \(f(x)\) is discontinuous at \(x = 0\). ### Conclusion Thus, the correct option is that \(f(x)\) is discontinuous at \(x = 0\). ---

To solve the problem, we need to analyze the function given: \[ f(x) = \begin{cases} \frac{e^{x[x]} - 1}{x + [x]} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

If f(x)= {{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}

If f(x)={{:(,x^(2)sin((1)/(x)),x ne 0),(,0, x=0):} , then

If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

If f(x)={{:(,x^(m)sin((1)/(x)),x ne 0),(,0,x=0):} is a continous at x=0, then

Let f(x)={{:(,x^(n)sin\ (1)/(x),x ne 0),(,0,x=0):} Then f(x) is continuous but not differentiable at x=0 . If

If f(x)={{:((e^([2x]+2x+1)-1)/([2x]+2x+1),:,x ne 0),(1,":", x =0):} , then (where [.] represents the greatest integer function)

If f(x)={{:(x^(2)"sin"(1)/(x)",",x ne0),(k",",x=0):}

On the interval I=[-2,2] , the function f(x)={{:(,(x+1)e^(-((1)/(|x|)+(1)/(x))),x ne 0),(,0,x=0):}

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section I - Solved Mcqs
  1. Let f(x) and g(x) be two equal real function such that f(x)=(x)/(|x|) ...

    Text Solution

    |

  2. If f(x) is periodic function with period, T, then

    Text Solution

    |

  3. If f(x)={{:(,(e^(x[x])-1)/(x+[x]),x ne 0),(,1,x=0):} then

    Text Solution

    |

  4. Let f(x) be defined on [-2,2] and be given by f(x)={(-1",",-2 le x l...

    Text Solution

    |

  5. Check the continuity of f(x) = {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+...

    Text Solution

    |

  6. If f(x)={{:(,x[x], 0 le x lt 2),(,(x-1)[x], 2 le x lt 3):} where [.] d...

    Text Solution

    |

  7. If f(x)={{:(,4,-3lt x lt -1),(,5+x,-1le x lt 0),(,5-x,0 le x lt 2),(,x...

    Text Solution

    |

  8. If f(x)={{:(,(x-a)^(n)cos ((1)/(x-a)), x ne a),(,0,x=a):} then at x=...

    Text Solution

    |

  9. Let f(x) and g(x) be two functions given by f(x)=-1|x-1|,-1 le x le 3 ...

    Text Solution

    |

  10. Let y=f(x) be definded parametrically as y=t^(2)+t|t|,x=2t-|t|, t in...

    Text Solution

    |

  11. Let f(x) be a function defined as f(x)={{:(,int(0)^(x)(3+|t-2|),"if "x...

    Text Solution

    |

  12. If a function y=f(x) is defined as y=(1)/(t^(2)-t-6)and t=(1)/(x-2), t...

    Text Solution

    |

  13. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  14. If f(x) = underset(r = 1)overset(n)(sum)a(r)|x|^(r), where a(i) s are ...

    Text Solution

    |

  15. Let f(x) = phi (x) + Psi(x) and phi'(a), Psi'(a) are finite and defini...

    Text Solution

    |

  16. A function f(x) is defiend in the interval [1,4] as follows: f(x)={(...

    Text Solution

    |

  17. If f(x)={(e^(x),xlt2),(a+bx,xge2):} is differentiable for all x epsilo...

    Text Solution

    |

  18. Let f(x)=min(x^(3),x^(4))"for all "x in R. Then,

    Text Solution

    |

  19. Let g(x) be a polynomial of degree one and f(x) be defined by f(x)=[(g...

    Text Solution

    |

  20. If f(x) = sin(pi(x-[x])),AA x in (-(pi)/(2),(pi)/(2)), where [*] denot...

    Text Solution

    |