Home
Class 12
MATHS
Let f(x) be defined on [-2,2] and be giv...

Let `f(x)` be defined on `[-2,2]` and be given by
`f(x)={(-1",",-2 le x le 0),(x-1",",1 lt x le 2):} and g(x)=f(|x|) +|f(x)|`.
Then find `g(x)`.

A

[-2,2]`

B

`[-2,0) uu (0,2]`

C

`[-2,1) uu (1,2]`

D

`[-2,0) uu (0,1) uu (1,2]`

Text Solution

Verified by Experts

The correct Answer is:
D

We have
`f(x)={{:(,-1,-2 le x le 0),(,x-1,0 lt x le2):}`
`therefore |f(x)|={{:(,1,-2 le x le 0),(,|x-1|,0 lt x le2):}`
`={{:(,1,-2 le xle 0),(,1-x,0 lt x lt 1),(,x-1,1 le x le 2):}`
and `|f(|x|)=|x|-1,"for "-2 le x le 2`
`{{:(-x,1,-2le xlt 0),(,x-1,0 le x le 2):}`
`therefore g(x)=|f(x)|+f(|x|)`
`Rightarrow g(x)={{:(,-x,-2 le x lt 0),(,0,0 le x lt 1),(,2(x-1),1 le x le 2):}`
Clearly, g(x) is a continuous at x=0,1
Also,
`("LHD at x=0")=((d)/(dx)(-x))_("at x=0")=-1`
`("RHD at x=0")=((d)/(dx)(0))_("at x=0")=0`
`("LHD at x=1")=((d)/(dx)(0))_("at x=0")=0`
`and ("RHD at x=1")=((d)/(dx)[2(x-1)])_("at x=1")=2`
`therefore ("LHD at x=0") ne ("RHD at x=0")`
`and ("LHD at x=1") ne ("RHD at x=1")`
So, g(x) is not differenetiable at x=0,1.
Now,
`("RHD at x=-2")=((d)/(dx)(-x))_("at x=-2")=-1` exist finitely.
Similarly, ("LHD at x=2")=2, exists finitely
Hence, g(x) is differentiable at all points in the interval [-1,1] except at x=0 and x=1
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be defined on [-2,2] and be given by f(x)={(-1",",-2 le x le 0),(x-1",",0 lt x le 2):} and g(x)=f(|x|) +|f(x)| . Then find g(x) .

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

Let f(x) be defined on [-2,2] and be given by f(x) = {−1;−2≤x≤0} and f(x) = {x−1 ; 0 < x ≤ 2 } ​ . and g(x)= f(|x|)+|f(x)| Find g(x)

f(x)={{:(x-1",", -1 le xle 0),(x^(2)",",0 lt x le 1):} and g(x)=sinx. Find h(x)=f(abs(g(x)))+abs(f(g(x))).

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f ^(-1) (x) is discontinous at x=

Let a function f(x) defined on [3,6] be given by f(x)={{:(,log_(e)[x],3 le x lt5),(,|log_(e)x|,5 le x lt 6):} then f(x) is

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

Let f(x) and g(x) be two functions given by f(x)=-1|x-1|,-1 le x le 3 and g(x)=2-|x+1|,-2 le x le 2 Then,

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section I - Solved Mcqs
  1. If f(x) is periodic function with period, T, then

    Text Solution

    |

  2. If f(x)={{:(,(e^(x[x])-1)/(x+[x]),x ne 0),(,1,x=0):} then

    Text Solution

    |

  3. Let f(x) be defined on [-2,2] and be given by f(x)={(-1",",-2 le x l...

    Text Solution

    |

  4. Check the continuity of f(x) = {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+...

    Text Solution

    |

  5. If f(x)={{:(,x[x], 0 le x lt 2),(,(x-1)[x], 2 le x lt 3):} where [.] d...

    Text Solution

    |

  6. If f(x)={{:(,4,-3lt x lt -1),(,5+x,-1le x lt 0),(,5-x,0 le x lt 2),(,x...

    Text Solution

    |

  7. If f(x)={{:(,(x-a)^(n)cos ((1)/(x-a)), x ne a),(,0,x=a):} then at x=...

    Text Solution

    |

  8. Let f(x) and g(x) be two functions given by f(x)=-1|x-1|,-1 le x le 3 ...

    Text Solution

    |

  9. Let y=f(x) be definded parametrically as y=t^(2)+t|t|,x=2t-|t|, t in...

    Text Solution

    |

  10. Let f(x) be a function defined as f(x)={{:(,int(0)^(x)(3+|t-2|),"if "x...

    Text Solution

    |

  11. If a function y=f(x) is defined as y=(1)/(t^(2)-t-6)and t=(1)/(x-2), t...

    Text Solution

    |

  12. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  13. If f(x) = underset(r = 1)overset(n)(sum)a(r)|x|^(r), where a(i) s are ...

    Text Solution

    |

  14. Let f(x) = phi (x) + Psi(x) and phi'(a), Psi'(a) are finite and defini...

    Text Solution

    |

  15. A function f(x) is defiend in the interval [1,4] as follows: f(x)={(...

    Text Solution

    |

  16. If f(x)={(e^(x),xlt2),(a+bx,xge2):} is differentiable for all x epsilo...

    Text Solution

    |

  17. Let f(x)=min(x^(3),x^(4))"for all "x in R. Then,

    Text Solution

    |

  18. Let g(x) be a polynomial of degree one and f(x) be defined by f(x)=[(g...

    Text Solution

    |

  19. If f(x) = sin(pi(x-[x])),AA x in (-(pi)/(2),(pi)/(2)), where [*] denot...

    Text Solution

    |

  20. If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

    Text Solution

    |