Home
Class 12
MATHS
If f(x)={{:(,4,-3lt x lt -1),(,5+x,-1le ...

If `f(x)={{:(,4,-3lt x lt -1),(,5+x,-1le x lt 0),(,5-x,0 le x lt 2),(,x^(2)+x-3,2 lt x lt 3):}` then, f(|x|) is

A

differentiable but not continuous in (-3,3)

B

continuous but not differentiable in (-3,3)

C

continuous as well as differentiable in (-3,3)

D

neither continuous nor differentiable (-3,3)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \( f(|x|) \) based on the piecewise function defined for \( f(x) \). Given the function: \[ f(x) = \begin{cases} 4 & \text{for } -3 < x < -1 \\ 5 + x & \text{for } -1 \leq x < 0 \\ 5 - x & \text{for } 0 \leq x < 2 \\ x^2 + x - 3 & \text{for } 2 < x < 3 \end{cases} \] ### Step 1: Determine the ranges for \( |x| \) The absolute value function \( |x| \) affects the input to \( f(x) \). We need to consider the cases for \( x \): 1. When \( x \geq 0 \), \( |x| = x \). 2. When \( x < 0 \), \( |x| = -x \). ### Step 2: Evaluate \( f(|x|) \) for different ranges of \( x \) **Case 1: \( x \geq 0 \) (i.e., \( |x| = x \))** - For \( 0 \leq x < 2 \): \[ f(|x|) = f(x) = 5 - x \] - For \( 2 \leq x < 3 \): \[ f(|x|) = f(x) = x^2 + x - 3 \] **Case 2: \( x < 0 \) (i.e., \( |x| = -x \))** - For \( -3 < x < -2 \): \[ f(|x|) = f(-x) = f(-(-x)) = f(x) = 4 \] - For \( -2 \leq x < -1 \): \[ f(|x|) = f(-x) = f(-(-x)) = f(x) = 5 + x \] - For \( -1 \leq x < 0 \): \[ f(|x|) = f(-x) = f(-(-x)) = f(x) = 5 + x \] ### Step 3: Combine the results Now, we can combine the results from both cases to write the piecewise function for \( f(|x|) \): \[ f(|x|) = \begin{cases} 4 & \text{for } -3 < x < -2 \\ 5 + x & \text{for } -2 \leq x < -1 \\ 5 - x & \text{for } 0 \leq x < 2 \\ x^2 + x - 3 & \text{for } 2 \leq x < 3 \end{cases} \] ### Final Answer Thus, the function \( f(|x|) \) can be expressed as: \[ f(|x|) = \begin{cases} 4 & \text{for } -3 < x < -2 \\ 5 + x & \text{for } -2 \leq x < 0 \\ 5 - x & \text{for } 0 \leq x < 2 \\ x^2 + x - 3 & \text{for } 2 \leq x < 3 \end{cases} \]

To solve the problem, we need to find the expression for \( f(|x|) \) based on the piecewise function defined for \( f(x) \). Given the function: \[ f(x) = \begin{cases} 4 & \text{for } -3 < x < -1 \\ 5 + x & \text{for } -1 \leq x < 0 \\ ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Let f(x)={{:(,x^(3)+x^(2)-10x,-1 le x lt 0),(,cos x,0 le x lt pi/2),(,1+sin x,pi/2 le x le pi):}" Then at "x=pi/2 , f(x) has:

Let f (x) be defined as f (x) ={{:(|x|, 0 le x lt1),(|x-1|+|x-2|, 1 le x lt2),(|x-3|, 2 le x lt 3):} The range of function g (x)= sin (7 (f (x)) is :

Let a , b in R,(a in 0) . If the funtion f defined as f(x)={{:(,(2x^(2))/(a),0 le x lt 1),(,a,1 le x lt sqrt2),(,(2b^(2)-4b)/(x^(3)),sqrt2lt x lt oo):} is a continous in [0,oo) . Then, (a,b)=

Let f(x) = {{:( x^(3) + x^(2) - 10 x ,, -1 le x lt 0) , (sin x ,, 0 le x lt x//2) , (1 + cos x ,, pi //2 le x le x ):} then f(x) has

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

f(x)={:{(5, x le 1) ,(a+bx,1 lt x lt 3),(b+5x,3 le x lt 5),(30,xge5):} then (a) f(x) is discontiuous AA a in R, b in R (b) f(x) is discontiuous if a=0 & b=5 (c) f(x) is discontiuous if a=5 & b=0 (d) f(x) is discontiuous if a=-5 & b=10

The function f(x)={{:(,(x^(2))/(a),0 le x lt 1),(,a,1le x lt sqrt2),(,(2b^(2)-4b)/(x^(2)),sqrt2 le x lt oo):} is a continuous for 0 le x lt oo . Then which of the following statements is correct?

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

"If "f(x)={{:(,-x-(pi)/(2),x le -(pi)/(2)),(,-cos x,-(pi)/(2) lt x le 0),(,x-1,0 lt x le 1),(,"In "x,x gt 1):} then which one of the following is not correct?

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section I - Solved Mcqs
  1. Check the continuity of f(x) = {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+...

    Text Solution

    |

  2. If f(x)={{:(,x[x], 0 le x lt 2),(,(x-1)[x], 2 le x lt 3):} where [.] d...

    Text Solution

    |

  3. If f(x)={{:(,4,-3lt x lt -1),(,5+x,-1le x lt 0),(,5-x,0 le x lt 2),(,x...

    Text Solution

    |

  4. If f(x)={{:(,(x-a)^(n)cos ((1)/(x-a)), x ne a),(,0,x=a):} then at x=...

    Text Solution

    |

  5. Let f(x) and g(x) be two functions given by f(x)=-1|x-1|,-1 le x le 3 ...

    Text Solution

    |

  6. Let y=f(x) be definded parametrically as y=t^(2)+t|t|,x=2t-|t|, t in...

    Text Solution

    |

  7. Let f(x) be a function defined as f(x)={{:(,int(0)^(x)(3+|t-2|),"if "x...

    Text Solution

    |

  8. If a function y=f(x) is defined as y=(1)/(t^(2)-t-6)and t=(1)/(x-2), t...

    Text Solution

    |

  9. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  10. If f(x) = underset(r = 1)overset(n)(sum)a(r)|x|^(r), where a(i) s are ...

    Text Solution

    |

  11. Let f(x) = phi (x) + Psi(x) and phi'(a), Psi'(a) are finite and defini...

    Text Solution

    |

  12. A function f(x) is defiend in the interval [1,4] as follows: f(x)={(...

    Text Solution

    |

  13. If f(x)={(e^(x),xlt2),(a+bx,xge2):} is differentiable for all x epsilo...

    Text Solution

    |

  14. Let f(x)=min(x^(3),x^(4))"for all "x in R. Then,

    Text Solution

    |

  15. Let g(x) be a polynomial of degree one and f(x) be defined by f(x)=[(g...

    Text Solution

    |

  16. If f(x) = sin(pi(x-[x])),AA x in (-(pi)/(2),(pi)/(2)), where [*] denot...

    Text Solution

    |

  17. If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

    Text Solution

    |

  18. If f(x) = [x^2] + sqrt({x}^2, where [] and {.} denote the greatest int...

    Text Solution

    |

  19. Let f be a differentiable function satisfying f(xy) =f(x).f(y).AA x gt...

    Text Solution

    |

  20. Let f:R->R be a function such that f((x+y)/3)=(f(x)+f(y))/3 ,f(0) = ...

    Text Solution

    |