Home
Class 12
MATHS
Let f(x) be a function defined as f(x)={...

Let f(x) be a function defined as `f(x)={{:(,int_(0)^(x)(3+|t-2|),"if "x gt 4),(,2x+8,"if "x le 4):}`
Then, f(x) is

A

continuous at x=4

B

neither continuous nor differentiable at x=4

C

everywhere continuous but not differentiable at x=4

D

everywhere continuous and differentiable

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the function \( f(x) \) defined as follows: \[ f(x) = \begin{cases} \int_{0}^{x} (3 + |t - 2|) \, dt & \text{if } x > 4 \\ 2x + 8 & \text{if } x \leq 4 \end{cases} \] ### Step 1: Analyze the case when \( x > 4 \) For \( x > 4 \), we need to evaluate the integral \( \int_{0}^{x} (3 + |t - 2|) \, dt \). The absolute value \( |t - 2| \) changes at \( t = 2 \). We need to split the integral into two parts: \[ f(x) = \int_{0}^{2} (3 + |t - 2|) \, dt + \int_{2}^{x} (3 + |t - 2|) \, dt \] ### Step 2: Evaluate the integral from \( 0 \) to \( 2 \) For \( t \) in the interval \( [0, 2] \), \( |t - 2| = 2 - t \). Thus, \[ \int_{0}^{2} (3 + |t - 2|) \, dt = \int_{0}^{2} (3 + (2 - t)) \, dt = \int_{0}^{2} (5 - t) \, dt \] Calculating this integral: \[ \int (5 - t) \, dt = 5t - \frac{t^2}{2} \bigg|_{0}^{2} = \left(5 \cdot 2 - \frac{2^2}{2}\right) - (0) = 10 - 2 = 8 \] ### Step 3: Evaluate the integral from \( 2 \) to \( x \) For \( t \) in the interval \( [2, x] \) (where \( x > 4 \)), \( |t - 2| = t - 2 \). Thus, \[ \int_{2}^{x} (3 + |t - 2|) \, dt = \int_{2}^{x} (3 + (t - 2)) \, dt = \int_{2}^{x} (t + 1) \, dt \] Calculating this integral: \[ \int (t + 1) \, dt = \frac{t^2}{2} + t \bigg|_{2}^{x} = \left(\frac{x^2}{2} + x\right) - \left(\frac{2^2}{2} + 2\right) = \left(\frac{x^2}{2} + x\right) - (2 + 2) = \frac{x^2}{2} + x - 4 \] ### Step 4: Combine the results for \( f(x) \) when \( x > 4 \) Putting it all together, we have: \[ f(x) = 8 + \left(\frac{x^2}{2} + x - 4\right) = \frac{x^2}{2} + x + 4 \] ### Step 5: Analyze the case when \( x \leq 4 \) For \( x \leq 4 \), we have: \[ f(x) = 2x + 8 \] ### Step 6: Check continuity at \( x = 4 \) To check continuity, we need to see if \( \lim_{x \to 4^-} f(x) = \lim_{x \to 4^+} f(x) = f(4) \). Calculating \( f(4) \): \[ f(4) = 2(4) + 8 = 8 + 8 = 16 \] Now, calculate \( \lim_{x \to 4^-} f(x) \): \[ \lim_{x \to 4^-} f(x) = 2(4) + 8 = 16 \] Now, calculate \( \lim_{x \to 4^+} f(x) \): \[ \lim_{x \to 4^+} f(x) = \frac{4^2}{2} + 4 + 4 = \frac{16}{2} + 4 + 4 = 8 + 4 + 4 = 16 \] Since both limits and \( f(4) \) are equal, \( f(x) \) is continuous at \( x = 4 \). ### Step 7: Check differentiability at \( x = 4 \) Calculate the left-hand derivative: \[ f'(x) = \frac{d}{dx}\left(\frac{x^2}{2} + x + 4\right) = x + 1 \] At \( x = 4 \): \[ f'(4^-) = 4 + 1 = 5 \] Calculate the right-hand derivative: \[ f'(x) = \frac{d}{dx}(2x + 8) = 2 \] At \( x = 4 \): \[ f'(4^+) = 2 \] Since \( f'(4^-) \neq f'(4^+) \), \( f(x) \) is not differentiable at \( x = 4 \). ### Conclusion The function \( f(x) \) is continuous everywhere but not differentiable at \( x = 4 \).

To solve the problem step by step, we will analyze the function \( f(x) \) defined as follows: \[ f(x) = \begin{cases} \int_{0}^{x} (3 + |t - 2|) \, dt & \text{if } x > 4 \\ 2x + 8 & \text{if } x \leq 4 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={{:(int_(0)^(x)(5+|1-t|)dt","," if "xgt 2),(5x+1","," if "x le 2):} then the function is

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^2-3t+2)dt,x in [1,3] Then the range of f(x), is

Let f(x) be a function defined by f(x)=int_1^xt(t^2-3t+2)dt,1<=x<=3 Then the range of f(x) is

Let f(x) be a function defined by f(x) = {{:((3x)/(|x|+2x),x ne 0),(0,x = 0):} Show that lim_(x rarr 0) f(x) does not exist.

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^(2)-3t+2)dt,1ltxlt3 then the maximum value of f(x) is

A function is defined as f(x) = {{:(e^(x)",",x le 0),(|x-1|",",x gt 0):} , then f(x) is

If a function f(x) is defined as f(x) = {{:(-x",",x lt 0),(x^(2)",",0 le x le 1),(x^(2)-x + 1",",x gt 1):} then

Let f (x) be defined as f (x) ={{:(|x|, 0 le x lt1),(|x-1|+|x-2|, 1 le x lt2),(|x-3|, 2 le x lt 3):} The range of function g (x)= sin (7 (f (x)) is :

Let f:R to R be a function defined by f(x)=(x^(2)-8)/(x^(2)+2) . Then f is

Let f(1):R to R, f_(2):[0,oo) to R, f_(3):R to R and f_(4):R to [0,oo) be a defined by f_(1)(x)={{:(,|x|,"if "x lt 0),(,e^(x),"if "x gt 0):}:f_(2)(x)=x^(2),f_(3)(x)={{:(,sin x,"if x"lt 0),(,x,"if "x ge 0):} and f_(4)(x)={{:(,f_(2)(f_(1)(x)),"if "x lt 0),(,f_(2)(f_(1)(f_(1)(x)))-1,"if "x ge 0):} Then, f_(4) is

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section I - Solved Mcqs
  1. Let f(x) and g(x) be two functions given by f(x)=-1|x-1|,-1 le x le 3 ...

    Text Solution

    |

  2. Let y=f(x) be definded parametrically as y=t^(2)+t|t|,x=2t-|t|, t in...

    Text Solution

    |

  3. Let f(x) be a function defined as f(x)={{:(,int(0)^(x)(3+|t-2|),"if "x...

    Text Solution

    |

  4. If a function y=f(x) is defined as y=(1)/(t^(2)-t-6)and t=(1)/(x-2), t...

    Text Solution

    |

  5. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  6. If f(x) = underset(r = 1)overset(n)(sum)a(r)|x|^(r), where a(i) s are ...

    Text Solution

    |

  7. Let f(x) = phi (x) + Psi(x) and phi'(a), Psi'(a) are finite and defini...

    Text Solution

    |

  8. A function f(x) is defiend in the interval [1,4] as follows: f(x)={(...

    Text Solution

    |

  9. If f(x)={(e^(x),xlt2),(a+bx,xge2):} is differentiable for all x epsilo...

    Text Solution

    |

  10. Let f(x)=min(x^(3),x^(4))"for all "x in R. Then,

    Text Solution

    |

  11. Let g(x) be a polynomial of degree one and f(x) be defined by f(x)=[(g...

    Text Solution

    |

  12. If f(x) = sin(pi(x-[x])),AA x in (-(pi)/(2),(pi)/(2)), where [*] denot...

    Text Solution

    |

  13. If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

    Text Solution

    |

  14. If f(x) = [x^2] + sqrt({x}^2, where [] and {.} denote the greatest int...

    Text Solution

    |

  15. Let f be a differentiable function satisfying f(xy) =f(x).f(y).AA x gt...

    Text Solution

    |

  16. Let f:R->R be a function such that f((x+y)/3)=(f(x)+f(y))/3 ,f(0) = ...

    Text Solution

    |

  17. f(x)=x^(3)+3x^(2)-33x-33"for "x gt 0 and g be its inverse such that kg...

    Text Solution

    |

  18. lim(h->0) (f(2h+2+h^2)-f(2))/(f(h-h^2+1)-f(1)) given that f'(2)=6 and ...

    Text Solution

    |

  19. Let f(x) = {{:(x exp[((1)/(|x|)+(1)/(x))]",",x ne 0),(0",",x = 0):} Te...

    Text Solution

    |

  20. Let f(x)=lim(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z...

    Text Solution

    |