Home
Class 12
MATHS
Let f(x)=lim(n to oo) ((2 sin x)^(2n))/...

Let `f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z`. Then

A

at `x=n pm(pi)/(6)`, f(x) is discontinuous

B

`f((pi)/(3))=1`

C

f(0)=0

D

all of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit given by the function \( f(x) = \lim_{n \to \infty} \frac{(2 \sin x)^{2n}}{3^n - (2 \cos x)^{2n}} \). ### Step 1: Analyze the limit expression We start with the expression: \[ f(x) = \lim_{n \to \infty} \frac{(2 \sin x)^{2n}}{3^n - (2 \cos x)^{2n}} \] ### Step 2: Identify the dominant terms as \( n \to \infty \) We need to consider the behavior of the numerator and denominator as \( n \) approaches infinity. The numerator is \( (2 \sin x)^{2n} \) and the denominator is \( 3^n - (2 \cos x)^{2n} \). 1. If \( |2 \sin x| < 3 \), then \( (2 \sin x)^{2n} \) will approach 0 as \( n \to \infty \). 2. If \( |2 \sin x| = 3 \), then both terms in the denominator will grow at the same rate. 3. If \( |2 \sin x| > 3 \), then the numerator will dominate. ### Step 3: Evaluate specific cases #### Case 1: \( |2 \sin x| < 3 \) If \( |2 \sin x| < 3 \), we have: \[ f(x) = \lim_{n \to \infty} \frac{(2 \sin x)^{2n}}{3^n} = 0 \] #### Case 2: \( |2 \sin x| = 3 \) This occurs when \( \sin x = \pm \frac{3}{2} \), which is not possible since \( \sin x \) must be in the range \([-1, 1]\). #### Case 3: \( |2 \sin x| > 3 \) This occurs when \( \sin x > \frac{3}{2} \) or \( \sin x < -\frac{3}{2} \), which is also not possible. ### Step 4: Identify discontinuities Now, we need to check specific values of \( x \): 1. **At \( x = 0 \)**: \[ f(0) = \lim_{n \to \infty} \frac{(2 \cdot 0)^{2n}}{3^n - (2 \cdot 1)^{2n}} = \frac{0}{3^n - 4^n} = 0 \] 2. **At \( x = \frac{\pi}{3} \)**: \[ f\left(\frac{\pi}{3}\right) = \lim_{n \to \infty} \frac{(2 \cdot \frac{\sqrt{3}}{2})^{2n}}{3^n - (2 \cdot \frac{1}{2})^{2n}} = \lim_{n \to \infty} \frac{3^n}{3^n - 1} = 1 \] 3. **At \( x = \frac{\pi}{6} \)**: \[ f\left(\frac{\pi}{6}\right) = \lim_{n \to \infty} \frac{(2 \cdot \frac{1}{2})^{2n}}{3^n - (2 \cdot \frac{\sqrt{3}}{2})^{2n}} = \lim_{n \to \infty} \frac{1^{2n}}{3^n - 3^n} \text{ (undefined)} \] ### Conclusion From the evaluations: - \( f(0) = 0 \) - \( f\left(\frac{\pi}{3}\right) = 1 \) - \( f\left(\frac{\pi}{6}\right) \) is undefined, indicating a discontinuity. Thus, the function is discontinuous at \( x = \frac{\pi}{6} \), \( f\left(\frac{\pi}{3}\right) = 1 \), and \( f(0) = 0 \). ### Final Answer The correct option is **D: All of the above**.

To solve the problem, we need to evaluate the limit given by the function \( f(x) = \lim_{n \to \infty} \frac{(2 \sin x)^{2n}}{3^n - (2 \cos x)^{2n}} \). ### Step 1: Analyze the limit expression We start with the expression: \[ f(x) = \lim_{n \to \infty} \frac{(2 \sin x)^{2n}}{3^n - (2 \cos x)^{2n}} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

The point of discontinuity of f(x)=underset(n to oo)lim ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z is

Let f(x)= lim_(n->oo)(sinx)^(2n)

Let f(x)=lim_(nto oo) (2x^(2n) sin (1)/(x)+x)/(1+x^(2n)) , then which of the following alternative(s) is/ are correct?

f (x) = lim _(x to oo) (x ^(2) + 2 (x+1)^(2n))/((x+1) ^(2n+1) + x^(2) +1),n in N and g (x) =tan ((1)/(2)sin ^(-1)((2f (x))/(1+f ^(2) (x)))), then lim_(x to -3) ((x ^(2) +4x +3))/(sin (x+3) g (x)) is equal to:

Let f(x)=lim_(n->oo)(log(2+x)-x^(2n)sinx)/(1+x^(2n)) . then

We have f (x) lim_(n to oo) cos (x)/(2) cos (x)/(2^(2)) cos (x)/(2^(3)) cos (x)/(2^(4)) …… …. cos (x)/(2^(n)) = ("sin" x)/(2^(n) "sin" (x)/(2^(n))) using the identity lim_(n to oo) lim_(x to 0) f(x) equals

Let f:(-pi/2, pi/2)->R , f(x) ={lim_(n->oo) ((tanx)^(2n)+x^2)/(sin^2x+(tanx)^(2n)) x in 0 , n in N ; 1 if x=0 which of the following holds good? (a) f(-(pi^(-))/4)=f((pi^(+))/4) (b) f(-(pi^(-))/4)=f(-(pi^(+))/4) (c) f((pi^(-))/4)=f((pi^(+))/4) (d) f(0^(+))=f(0)=f(0^(-))

The equivalent definition of the function f(x)=lim_(n to oo)(x^(n)-x^(-n))/(x^(n)+x^(-n)), x gt 0 , is

lim_(n->oo)sin(x/2^n)/(x/2^n)

Let f(x)=lim_(nto oo) 1/n((x+1/n)^(2)+(x+2/n)^(2)+……….+(x+(n-1)/n)^(2)) Then the minimum value of f(x) is

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section I - Solved Mcqs
  1. lim(h->0) (f(2h+2+h^2)-f(2))/(f(h-h^2+1)-f(1)) given that f'(2)=6 and ...

    Text Solution

    |

  2. Let f(x) = {{:(x exp[((1)/(|x|)+(1)/(x))]",",x ne 0),(0",",x = 0):} Te...

    Text Solution

    |

  3. Let f(x)=lim(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z...

    Text Solution

    |

  4. The function f(x)=| |x|-1|, x in R, is differerntiable at all x in R e...

    Text Solution

    |

  5. If f(x) is continuous and differentiable function f((1)/(n))=0 AA n...

    Text Solution

    |

  6. The second degree polynomial f(x), satisfying f(0)=o, f(1)=1,f'(x)gt...

    Text Solution

    |

  7. If f''(x) =- f(x) and g(x) = f'(x) and F(x)=(f((x)/(2)))^(2)+(g((x)/(2...

    Text Solution

    |

  8. If f(x)min(x,x^(2),x^(3)), then

    Text Solution

    |

  9. If f(x)=min(1,x^2,x^3), then

    Text Solution

    |

  10. Let f:""(-1,""1) rarr R be a differentiable function with f(0)""=""-...

    Text Solution

    |

  11. if f(x) ={{:(-x=(pi)/(2),xle -(pi)/(2)),(- cos x, -(pi)/(2)lt x ,le 0...

    Text Solution

    |

  12. Let f : R rarr R be a function such that f(x+y) = f(x) + f(y), AA x, y...

    Text Solution

    |

  13. Let f(x) = {{:(x^(2)|"cos"(pi)/(x)|",",x ne 0","x in R),(0",",x = 0):}...

    Text Solution

    |

  14. Q. For every integer n, leta(n) and b(n) be real numbers. Let functio...

    Text Solution

    |

  15. If f and g are differentiable functions in [0, 1] satisfying f(0)""=""...

    Text Solution

    |

  16. Let f(1):R to R, f(2):[0,oo) to R, f(3):R to R and f(4):R to [0,oo) be...

    Text Solution

    |

  17. In Q,NO, 111, f(3) is

    Text Solution

    |

  18. Let f(1):R to R, f(2):[0,oo) to R, f(3):R to R and f(4):R to [0,oo) be...

    Text Solution

    |

  19. Let f(1):R to R, f(2):[0,oo) to R, f(3):R to R and f(4):R to [0,oo) be...

    Text Solution

    |

  20. about to only mathematics

    Text Solution

    |