Home
Class 12
MATHS
Let f(1):R to R, f(2):[0,oo) to R, f(3):...

Let `f_(1):R to R, f_(2):[0,oo) to R, f_(3):R to R and f_(4):R to [0,oo)` be a defined by
`f_(1)(x)={{:(,|x|,"if "x lt 0),(,e^(x),"if "x gt 0):}:f_(2)(x)=x^(2),f_(3)(x)={{:(,sin x,"if x"lt 0),(,x,"if "x ge 0):}` and `f_(4)(x)={{:(,f_(2)(f_(1)(x)),"if "x lt 0),(,f_(2)(f_(1)(f_(1)(x)))-1,"if "x ge 0):}` then `f_(2)` of `f_(1)` is

A

onto but not one-one

B

neither continuous nor one-one

C

differentiable but not one-one

D

continuous and one-one

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f_2(f_1(x)) \) where the functions are defined as follows: 1. \( f_1(x) = \begin{cases} |x| & \text{if } x < 0 \\ e^x & \text{if } x \geq 0 \end{cases} \) 2. \( f_2(x) = x^2 \) 3. \( f_3(x) = \begin{cases} \sin x & \text{if } x < 0 \\ x & \text{if } x \geq 0 \end{cases} \) 4. \( f_4(x) = \begin{cases} f_2(f_1(x)) & \text{if } x < 0 \\ f_2(f_1(f_1(x))) - 1 & \text{if } x \geq 0 \end{cases} \) ### Step-by-Step Solution: **Step 1: Determine \( f_1(x) \)** For \( x < 0 \): \[ f_1(x) = |x| = -x \] For \( x \geq 0 \): \[ f_1(x) = e^x \] **Step 2: Substitute \( f_1(x) \) into \( f_2 \)** Now we need to find \( f_2(f_1(x)) \). **Case 1: When \( x < 0 \)** Substituting \( f_1(x) \): \[ f_2(f_1(x)) = f_2(-x) = (-x)^2 = x^2 \] **Case 2: When \( x \geq 0 \)** Substituting \( f_1(x) \): \[ f_2(f_1(x)) = f_2(e^x) = (e^x)^2 = e^{2x} \] **Step 3: Combine the results** Thus, we can write: \[ f_2(f_1(x)) = \begin{cases} x^2 & \text{if } x < 0 \\ e^{2x} & \text{if } x \geq 0 \end{cases} \] ### Final Result: The function \( f_2(f_1(x)) \) is given by: \[ f_2(f_1(x)) = \begin{cases} x^2 & \text{if } x < 0 \\ e^{2x} & \text{if } x \geq 0 \end{cases} \]

To solve the problem, we need to find \( f_2(f_1(x)) \) where the functions are defined as follows: 1. \( f_1(x) = \begin{cases} |x| & \text{if } x < 0 \\ e^x & \text{if } x \geq 0 \end{cases} \) 2. \( f_2(x) = x^2 \) ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

Let f_(1):R to R, f_(2):[0,oo) to R, f_(3):R to R and f_(4):R to [0,oo) be a defined by f_(1)(x)={{:(,|x|,"if "x lt 0),(,e^(x),"if "x gt 0):}:f_(2)(x)=x^(2),f_(3)(x)={{:(,sin x,"if x"lt 0),(,x,"if "x ge 0):} and f_(4)(x)={{:(,f_(2)(f_(1)(x)),"if "x lt 0),(,f_(2)(f_(1)(f_(1)(x)))-1,"if "x ge 0):} then f_(2) is

Let f(1):R to R, f_(2):[0,oo) to R, f_(3):R to R and f_(4):R to [0,oo) be a defined by f_(1)(x)={{:(,|x|,"if "x lt 0),(,e^(x),"if "x gt 0):}:f_(2)(x)=x^(2),f_(3)(x)={{:(,sin x,"if x"lt 0),(,x,"if "x ge 0):} and f_(4)(x)={{:(,f_(2)(f_(1)(x)),"if "x lt 0),(,f_(2)(f_(1)(f_(1)(x)))-1,"if "x ge 0):} Then, f_(4) is

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

Let f_(1) : R to R, f_(2) : [0, oo) to R, f_(3) : R to R be three function defined as f_(1)(x) = {(|x|, x < 0),(e^x , x ge 0):}, f_(2)(x)=x^2, f_(3)(x) = {(f_(2)(f_1(x)),x < 0),(f_(2)(f_1(x))-1, x ge 0):} then f_3(x) is:

If f(x)={{:(2+x",", x ge0),(4-x",", x lt 0):}, then f (f(x)) is given by :

If f: R to R be defined by f(x)={(2x:xgt3),(x^(2):1lt x le 3),(3x:x le 1):} Then, f(-1)+f(2)+f(4) is

Define f(x) as the product of two real functions f_(1)(x)=x, x epsilon R and f_(2)(x)={("sin"1/x, "if", x!=0),(0 , "if", x=0):} as follows f(x)={(f_(1)(x).f_(2)(x), "if", x!=0),(0, "if", x=0):} Statement 2: f_(1)(x) and f_(2)(x) are continuous on IR.

The function f is defined as : f(x)={{:(1","x gt0),(0"," x =0),(-1","x lt 0):} The range of f is :

Let a function f:R to R be defined as f (x) =x+ sin x. The value of int _(0) ^(2pi)f ^(-1)(x) dx will be:

Let f(x)=(x^(2)-2x+1)/(x+3),f i n d x: (i) f(x) gt 0 (ii) f(x) lt 0

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section I - Solved Mcqs
  1. Let f(1):R to R, f(2):[0,oo) to R, f(3):R to R and f(4):R to [0,oo) be...

    Text Solution

    |

  2. In Q,NO, 111, f(3) is

    Text Solution

    |

  3. Let f(1):R to R, f(2):[0,oo) to R, f(3):R to R and f(4):R to [0,oo) be...

    Text Solution

    |

  4. Let f(1):R to R, f(2):[0,oo) to R, f(3):R to R and f(4):R to [0,oo) be...

    Text Solution

    |

  5. about to only mathematics

    Text Solution

    |

  6. Let f:[a,b]to[1,oo) be a continuous function and let g:RtoR be defined...

    Text Solution

    |

  7. Let f: R to R and g:R to R be respectively given by f(x) =|x|+1 and g...

    Text Solution

    |

  8. Let g: R -> R be a differentiable function with g(0) = 0,,g'(1)!=0.Let...

    Text Solution

    |

  9. Let f(x)={{:(,3sinx+a^(2)-10a+30,x in Q),(,4 cos x,x in Q):}"which"one...

    Text Solution

    |

  10. If ("lim")(xvec0)({(a-n)n x-tanx}sinn x)/(x^2)-0, where n is nonzero...

    Text Solution

    |

  11. The value of k for which f(x)={{:(,(x^(2^(32))-2^(32)x+4^(16)-1)/((x-1...

    Text Solution

    |

  12. The functionf(x)={{:(,(x^(2))/(a),0 le x lt 1),(,a,1le x lt sqrt2),(,(...

    Text Solution

    |

  13. If f(x)={{:(,x([(1)/(x)]+[(2)/(x)]+.....+[(n)/(x)]),x ne 0),(,k,x=0):}...

    Text Solution

    |

  14. The value of k for which f(x)={{:(,[1+x(e^(-1//x^(2)))sin(1/(x^(4)))]^...

    Text Solution

    |

  15. Let f(x)={{:(,sum(r=0)^(x^(2)[(1)/(|x|)])r,x ne 0),(,k,x=0):} where [....

    Text Solution

    |

  16. If f (x)= {{:(|x|-3"," , x lt 1 ), (|x-2| + a"," , x ge 1):},g (x) = {...

    Text Solution

    |

  17. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  18. Let f:(0,oo)to R be a continuous function such that F(x)=int(0)^(x^(2)...

    Text Solution

    |

  19. A function f:R to R is differernitable and satisfies the equation f((1...

    Text Solution

    |

  20. Suppose f(x)=e^(ax)+e^(bx)," where " a ne b, and that f''(x) -2f'(x)-1...

    Text Solution

    |