Home
Class 12
MATHS
The value of k for which f(x)={{:(,(x^(2...

The value of k for which `f(x)={{:(,(x^(2^(32))-2^(32)x+4^(16)-1)/((x-1)^(2)),x ne 1),(,k,x=1):}` is continuous at x=1, is

A

`2^(63)-2^(31)`

B

`2^(65)-2^(33)`

C

`2^(62)-2^(31)`

D

`2^(65)-2^(31)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) for which the function \[ f(x) = \begin{cases} \frac{x^{2^{32}} - 2^{32}x + 4^{16} - 1}{(x-1)^2} & \text{if } x \neq 1 \\ k & \text{if } x = 1 \end{cases} \] is continuous at \( x = 1 \), we need to ensure that \[ \lim_{x \to 1} f(x) = f(1) = k. \] ### Step 1: Calculate the limit as \( x \) approaches 1 We need to evaluate \[ \lim_{x \to 1} \frac{x^{2^{32}} - 2^{32}x + 4^{16} - 1}{(x-1)^2}. \] ### Step 2: Substitute \( x = 1 \) into the numerator First, we substitute \( x = 1 \) into the numerator: \[ 1^{2^{32}} - 2^{32} \cdot 1 + 4^{16} - 1 = 1 - 2^{32} + 4^{16} - 1 = 4^{16} - 2^{32}. \] Since \( 4^{16} = (2^2)^{16} = 2^{32} \), we have: \[ 4^{16} - 2^{32} = 2^{32} - 2^{32} = 0. \] ### Step 3: Check the form of the limit The limit takes the form \( \frac{0}{0} \) as \( x \to 1 \). We can apply L'Hôpital's Rule or factor the numerator. ### Step 4: Factor the numerator We can factor \( x^{2^{32}} - 2^{32}x + 4^{16} - 1 \) using the fact that \( x = 1 \) is a root: Let \( g(x) = x^{2^{32}} - 2^{32}x + 4^{16} - 1 \). We can find \( g'(x) \) and evaluate it at \( x = 1 \) to apply L'Hôpital's Rule. ### Step 5: Differentiate the numerator Using the power rule, we differentiate: \[ g'(x) = 2^{32} x^{2^{32}-1} - 2^{32}. \] Now, substituting \( x = 1 \): \[ g'(1) = 2^{32} \cdot 1^{2^{32}-1} - 2^{32} = 2^{32} - 2^{32} = 0. \] ### Step 6: Differentiate again Since we still have \( \frac{0}{0} \), we differentiate again: \[ g''(x) = 2^{32}(2^{32}-1)x^{2^{32}-2}. \] Now substituting \( x = 1 \): \[ g''(1) = 2^{32}(2^{32}-1) \cdot 1^{2^{32}-2} = 2^{32}(2^{32}-1). \] ### Step 7: Evaluate the limit using L'Hôpital's Rule Now we can evaluate the limit: \[ \lim_{x \to 1} \frac{g(x)}{(x-1)^2} = \lim_{x \to 1} \frac{g''(x)}{2} = \frac{2^{32}(2^{32}-1)}{2} = 2^{31}(2^{32}-1). \] ### Step 8: Set the limit equal to \( k \) For continuity at \( x = 1 \): \[ k = 2^{31}(2^{32}-1). \] Thus, the value of \( k \) for which \( f(x) \) is continuous at \( x = 1 \) is: \[ \boxed{2^{31}(2^{32}-1)}. \]

To find the value of \( k \) for which the function \[ f(x) = \begin{cases} \frac{x^{2^{32}} - 2^{32}x + 4^{16} - 1}{(x-1)^2} & \text{if } x \neq 1 \\ k & \text{if } x = 1 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

The value of k for which f(x)={{:(,[1+x(e^(-1//x^(2)))sin(1/(x^(4)))]^(e^(1//x^(2))),x ne 0),(,k,x=0):} is continuous at x=0, is

If f(x)={{:(,((4^(x)-1)^(3))/(sin(x//4)log(1+x^(2)//3)),x ne 0),(,k,x=0):} is a continous at x=0, then k=

The value of x for which [(3,x),(x,1)]= [(3,2),(2,1)] is

If f(x)= {:{((x^(2) + 3x+p)/(2(x^(2)-1)) , xne 1),(5/4, x = 1):} is continuous at x =1 then

lim_(xrarr 1) (x^(2^(32))-2^32x+4^16-1)/((x-1)^2) is equal to

Find the value of f(1) that the function f(x)= (9(x^(2/3)-2x^(1/3)+1))/((x-1)^(2)), x ne 1 is continuous at x =1

If f(x)={((2^(x+2)-16)/(4^x-16),x!=2),(k, x=2):} is continuous at x=2 , find k .

The value of k for which f(x)= {((1-cos 2x )/(x^2 )", " x ne 0 ),(k ", "x=0):} continuous at x=0, is :

If the function f(x) ={:{((3x^3-2x^2-1)/(x-1)", "x ne 1),(" "K", " x= 1):}, is continuous at x=1,find the value of k.

Find the value of k so that the function f(x) = {((2^(x+2) - 16)/(4^(x) - 16),"if",x ne 2),(" k","if",x = 2):} is continuous at x = 2.

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section I - Solved Mcqs
  1. Let f(x)={{:(,3sinx+a^(2)-10a+30,x in Q),(,4 cos x,x in Q):}"which"one...

    Text Solution

    |

  2. If ("lim")(xvec0)({(a-n)n x-tanx}sinn x)/(x^2)-0, where n is nonzero...

    Text Solution

    |

  3. The value of k for which f(x)={{:(,(x^(2^(32))-2^(32)x+4^(16)-1)/((x-1...

    Text Solution

    |

  4. The functionf(x)={{:(,(x^(2))/(a),0 le x lt 1),(,a,1le x lt sqrt2),(,(...

    Text Solution

    |

  5. If f(x)={{:(,x([(1)/(x)]+[(2)/(x)]+.....+[(n)/(x)]),x ne 0),(,k,x=0):}...

    Text Solution

    |

  6. The value of k for which f(x)={{:(,[1+x(e^(-1//x^(2)))sin(1/(x^(4)))]^...

    Text Solution

    |

  7. Let f(x)={{:(,sum(r=0)^(x^(2)[(1)/(|x|)])r,x ne 0),(,k,x=0):} where [....

    Text Solution

    |

  8. If f (x)= {{:(|x|-3"," , x lt 1 ), (|x-2| + a"," , x ge 1):},g (x) = {...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. Let f:(0,oo)to R be a continuous function such that F(x)=int(0)^(x^(2)...

    Text Solution

    |

  11. A function f:R to R is differernitable and satisfies the equation f((1...

    Text Solution

    |

  12. Suppose f(x)=e^(ax)+e^(bx)," where " a ne b, and that f''(x) -2f'(x)-1...

    Text Solution

    |

  13. If f(x)={alpha+sin[x]/x , x > 0 and 2 ,x=0 and beta+[(sin x-x)/x^3] ,x...

    Text Solution

    |

  14. If a function y=f(x) is defined as y=(1)/(t^(2)-t-6)and t=(1)/(x-2), t...

    Text Solution

    |

  15. If f(x) is continuous in [0,2] and f(0)=f(2). Then the equation f(x)=f...

    Text Solution

    |

  16. If lim(x to a) f(x)=lim(x to a) [f(x)] and f(x) is non-constant con...

    Text Solution

    |

  17. Let f : R rarr R be a differentiable function at x = 0 satisfying f(0)...

    Text Solution

    |

  18. For x in R, f(x) =|log(e) 2-sinx| and g(x) = f(f(x)) , then

    Text Solution

    |

  19. Let f:R to R and g:R to R be differentiable functions such that f(x)=x...

    Text Solution

    |

  20. Let f:square to square, g : square to square and h: square to square b...

    Text Solution

    |