Home
Class 12
MATHS
The functionf(x)={{:(,(x^(2))/(a),0 le x...

The function`f(x)={{:(,(x^(2))/(a),0 le x lt 1),(,a,1le x lt sqrt2),(,(2b^(2)-4b)/(x^(2)),sqrt2 le x lt oo):}` is a continuous for `0 le x lt oo`. Then which of the following statements is correct?

A

The number of all possible ordered pairs (a,b) is 3

B

The number of all possible ordered pairs (a,b) is 4

C

The product of all possible pairs ,b is -1

D

The product of all possible values of b is 1

Text Solution

AI Generated Solution

The correct Answer is:
To determine the correct statement regarding the function \[ f(x) = \begin{cases} \frac{x^2}{a} & \text{for } 0 \leq x < 1 \\ a & \text{for } 1 \leq x < \sqrt{2} \\ \frac{2b^2 - 4b}{x^2} & \text{for } \sqrt{2} \leq x < \infty \end{cases} \] we need to ensure that the function is continuous at the points where the definition of the function changes, specifically at \(x = 1\) and \(x = \sqrt{2}\). ### Step 1: Check continuity at \(x = 1\) To ensure continuity at \(x = 1\), we need to check that: \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = f(1) \] Calculating the left-hand limit: \[ \lim_{x \to 1^-} f(x) = \frac{1^2}{a} = \frac{1}{a} \] Calculating the right-hand limit: \[ \lim_{x \to 1^+} f(x) = a \] Setting these equal for continuity: \[ \frac{1}{a} = a \] Multiplying both sides by \(a\) (assuming \(a \neq 0\)) gives: \[ 1 = a^2 \implies a = \pm 1 \] ### Step 2: Check continuity at \(x = \sqrt{2}\) Next, we check continuity at \(x = \sqrt{2}\): \[ \lim_{x \to \sqrt{2}^-} f(x) = a \] Calculating the right-hand limit: \[ \lim_{x \to \sqrt{2}^+} f(x) = \frac{2b^2 - 4b}{(\sqrt{2})^2} = \frac{2b^2 - 4b}{2} = b^2 - 2b \] Setting these equal for continuity: \[ a = b^2 - 2b \] ### Step 3: Substitute values of \(a\) Now we substitute the possible values of \(a\) into the equation \(a = b^2 - 2b\): 1. If \(a = 1\): \[ 1 = b^2 - 2b \implies b^2 - 2b - 1 = 0 \] Using the quadratic formula: \[ b = \frac{2 \pm \sqrt{4 + 4}}{2} = 1 \pm \sqrt{2} \] 2. If \(a = -1\): \[ -1 = b^2 - 2b \implies b^2 - 2b + 1 = 0 \implies (b - 1)^2 = 0 \implies b = 1 \] ### Step 4: Possible pairs of \((a, b)\) The possible pairs \((a, b)\) are: 1. \((1, 1 + \sqrt{2})\) 2. \((1, 1 - \sqrt{2})\) 3. \((-1, 1)\) ### Step 5: Product of all possible values of \(b\) The possible values of \(b\) are \(1 + \sqrt{2}\), \(1 - \sqrt{2}\), and \(1\). The product is: \[ (1 + \sqrt{2})(1 - \sqrt{2})(1) = (1^2 - (\sqrt{2})^2) = 1 - 2 = -1 \] ### Conclusion Thus, the correct statement regarding the function is that the product of all possible values of \(b\) is \(-1\).

To determine the correct statement regarding the function \[ f(x) = \begin{cases} \frac{x^2}{a} & \text{for } 0 \leq x < 1 \\ a & \text{for } 1 \leq x < \sqrt{2} \\ \frac{2b^2 - 4b}{x^2} & \text{for } \sqrt{2} \leq x < \infty ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Let a , b in R,(a in 0) . If the funtion f defined as f(x)={{:(,(2x^(2))/(a),0 le x lt 1),(,a,1 le x lt sqrt2),(,(2b^(2)-4b)/(x^(3)),sqrt2lt x lt oo):} is a continous in [0,oo) . Then, (a,b)=

The function f(x)= {(5x-4 ", " 0 lt x le 1 ),( 4x^3-3x", " 1 lt x lt 2):}

Let f (x) be a continous function in [-1,1] such that f (x)= [{:((ln (ax ^(2)+ bx +c))/(x ^(2)),,, -1 le x lt 0),(1 ,,, x =0),((sin (e ^(x ^(2))-1))/(x ^(2)),,, 0 lt x le 1):} Then which of the following is/are corrent

The function f(x)={x^2a a,if1lt=x

Consider the function f(x) = {{:(x{x}+1",","if",0 le x lt 1),(2-{x}",","if",1 le x le 2):} , where {x} denotes the fractional part function. Which one of the following statements is not correct ?

If f(x)={{:(,4,-3lt x lt -1),(,5+x,-1le x lt 0),(,5-x,0 le x lt 2),(,x^(2)+x-3,2 lt x lt 3):} then, f(|x|) is

Show that the function f (x)={ {:(3x^(2) + 12 x - 1,- 1 le x le 2 ),(" "37 - x," "2 lt x le 3 ):} is continuous at x = 2

If 0 le x lt oo, then cos^(-1)((1-x^(2))/(1+x^(2))) equals

Let f(x)={{:(,x^(3)+x^(2)-10x,-1 le x lt 0),(,cos x,0 le x lt pi/2),(,1+sin x,pi/2 le x le pi):}" Then at "x=pi/2 , f(x) has:

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section I - Solved Mcqs
  1. If ("lim")(xvec0)({(a-n)n x-tanx}sinn x)/(x^2)-0, where n is nonzero...

    Text Solution

    |

  2. The value of k for which f(x)={{:(,(x^(2^(32))-2^(32)x+4^(16)-1)/((x-1...

    Text Solution

    |

  3. The functionf(x)={{:(,(x^(2))/(a),0 le x lt 1),(,a,1le x lt sqrt2),(,(...

    Text Solution

    |

  4. If f(x)={{:(,x([(1)/(x)]+[(2)/(x)]+.....+[(n)/(x)]),x ne 0),(,k,x=0):}...

    Text Solution

    |

  5. The value of k for which f(x)={{:(,[1+x(e^(-1//x^(2)))sin(1/(x^(4)))]^...

    Text Solution

    |

  6. Let f(x)={{:(,sum(r=0)^(x^(2)[(1)/(|x|)])r,x ne 0),(,k,x=0):} where [....

    Text Solution

    |

  7. If f (x)= {{:(|x|-3"," , x lt 1 ), (|x-2| + a"," , x ge 1):},g (x) = {...

    Text Solution

    |

  8. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  9. Let f:(0,oo)to R be a continuous function such that F(x)=int(0)^(x^(2)...

    Text Solution

    |

  10. A function f:R to R is differernitable and satisfies the equation f((1...

    Text Solution

    |

  11. Suppose f(x)=e^(ax)+e^(bx)," where " a ne b, and that f''(x) -2f'(x)-1...

    Text Solution

    |

  12. If f(x)={alpha+sin[x]/x , x > 0 and 2 ,x=0 and beta+[(sin x-x)/x^3] ,x...

    Text Solution

    |

  13. If a function y=f(x) is defined as y=(1)/(t^(2)-t-6)and t=(1)/(x-2), t...

    Text Solution

    |

  14. If f(x) is continuous in [0,2] and f(0)=f(2). Then the equation f(x)=f...

    Text Solution

    |

  15. If lim(x to a) f(x)=lim(x to a) [f(x)] and f(x) is non-constant con...

    Text Solution

    |

  16. Let f : R rarr R be a differentiable function at x = 0 satisfying f(0)...

    Text Solution

    |

  17. For x in R, f(x) =|log(e) 2-sinx| and g(x) = f(f(x)) , then

    Text Solution

    |

  18. Let f:R to R and g:R to R be differentiable functions such that f(x)=x...

    Text Solution

    |

  19. Let f:square to square, g : square to square and h: square to square b...

    Text Solution

    |

  20. If h(x)= f(f(x)) for all x inR, and f(x)=x^3 + 3x+2 , then h(0) equals

    Text Solution

    |