Home
Class 12
MATHS
If f(x)={{:(,x([(1)/(x)]+[(2)/(x)]+........

If `f(x)={{:(,x([(1)/(x)]+[(2)/(x)]+.....+[(n)/(x)]),x ne 0),(,k,x=0):}` and `n in N`. Then the value of k for which f(x) is continuous at x=0 is

A

n

B

n+1

C

`n(n+1)`

D

`(n(n+1))/(2)

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) for which the function \[ f(x) = \begin{cases} x \left( \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \ldots + \left\lfloor \frac{n}{x} \right\rfloor \right), & x \neq 0 \\ k, & x = 0 \end{cases} \] is continuous at \( x = 0 \), we need to evaluate the limit of \( f(x) \) as \( x \) approaches \( 0 \) and set it equal to \( k \). ### Step-by-Step Solution: 1. **Understanding the Function**: The function \( f(x) \) for \( x \neq 0 \) involves the floor function \( \left\lfloor \frac{j}{x} \right\rfloor \) for \( j = 1, 2, \ldots, n \). As \( x \) approaches \( 0 \), \( \frac{j}{x} \) becomes very large, and thus \( \left\lfloor \frac{j}{x} \right\rfloor \) will also be large. 2. **Finding the Limit**: We need to find the limit: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} x \left( \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \ldots + \left\lfloor \frac{n}{x} \right\rfloor \right) \] 3. **Estimating Each Floor Function**: For each \( j \): \[ \left\lfloor \frac{j}{x} \right\rfloor \approx \frac{j}{x} - 1 \quad \text{(as } x \to 0\text{)} \] Therefore, \[ \left\lfloor \frac{j}{x} \right\rfloor \text{ lies between } \frac{j}{x} - 1 \text{ and } \frac{j}{x} \] 4. **Summing the Floor Functions**: We can sum these estimates: \[ \sum_{j=1}^{n} \left\lfloor \frac{j}{x} \right\rfloor \approx \sum_{j=1}^{n} \left( \frac{j}{x} - 1 \right) = \frac{1 + 2 + \ldots + n}{x} - n = \frac{\frac{n(n+1)}{2}}{x} - n \] 5. **Combining with \( x \)**: Now, substituting back into the limit: \[ f(x) \approx x \left( \frac{n(n+1)}{2x} - n \right) = \frac{n(n+1)}{2} - nx \] 6. **Taking the Limit**: As \( x \to 0 \): \[ \lim_{x \to 0} f(x) = \frac{n(n+1)}{2} \] 7. **Setting the Limit Equal to \( k \)**: For continuity at \( x = 0 \): \[ k = \frac{n(n+1)}{2} \] ### Final Answer: The value of \( k \) for which \( f(x) \) is continuous at \( x = 0 \) is \[ \boxed{\frac{n(n+1)}{2}} \]

To find the value of \( k \) for which the function \[ f(x) = \begin{cases} x \left( \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \ldots + \left\lfloor \frac{n}{x} \right\rfloor \right), & x \neq 0 \\ k, & x = 0 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={{:(,sum_(r=0)^(x^(2)[(1)/(|x|)])r,x ne 0),(,k,x=0):} where [.] denotes the greatest integer function. The value of k for which is continuous at x=0, is

f(x) = {{:(("tan"((pi)/(4)+x))^(1//x)",",x ne 0),(k",",x = 0):} for what value of k, f(x) is continuous at x = 0 ?

Let f(x)=(x(3^(x)-1))/(1-cosx)" for "x ne0 . Then value of f(0) , which make f(x) continuous at x = 0, is

If f(x)={{:((sqrt(x^(2)+5)-3)/(x+2)",",x ne-2),(k,","x=-2):} is continuous at x=-2 , then the value of k is

Let f(x)={{:((log(1+ax)-log(1-bx))/x, x ne 0), (k,x=0):} . Find 'k' so that f(x) is continuous at x = 0.

f(x) ={{:( xe ^(-((1)/(x)+(1)/(|x|))), x ne 0),( a , x=0):} the value of a , such that f(x) is differentiable at x=0, is equal to

If f(x)={{:(,(x-a)^(n)cos ((1)/(x-a)), x ne a),(,0,x=a):} then at x=a, f(x) is

If f(x)={{:(,((4^(x)-1)^(3))/(sin(x//4)log(1+x^(2)//3)),x ne 0),(,k,x=0):} is a continous at x=0, then k=

If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

If f(x)={{:((sqrt(1-cos2x))/(sqrt(2)x)",",xne0),(k",",x=0):} then which value of k will make function f continuous at x=0 ?

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section I - Solved Mcqs
  1. The value of k for which f(x)={{:(,(x^(2^(32))-2^(32)x+4^(16)-1)/((x-1...

    Text Solution

    |

  2. The functionf(x)={{:(,(x^(2))/(a),0 le x lt 1),(,a,1le x lt sqrt2),(,(...

    Text Solution

    |

  3. If f(x)={{:(,x([(1)/(x)]+[(2)/(x)]+.....+[(n)/(x)]),x ne 0),(,k,x=0):}...

    Text Solution

    |

  4. The value of k for which f(x)={{:(,[1+x(e^(-1//x^(2)))sin(1/(x^(4)))]^...

    Text Solution

    |

  5. Let f(x)={{:(,sum(r=0)^(x^(2)[(1)/(|x|)])r,x ne 0),(,k,x=0):} where [....

    Text Solution

    |

  6. If f (x)= {{:(|x|-3"," , x lt 1 ), (|x-2| + a"," , x ge 1):},g (x) = {...

    Text Solution

    |

  7. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  8. Let f:(0,oo)to R be a continuous function such that F(x)=int(0)^(x^(2)...

    Text Solution

    |

  9. A function f:R to R is differernitable and satisfies the equation f((1...

    Text Solution

    |

  10. Suppose f(x)=e^(ax)+e^(bx)," where " a ne b, and that f''(x) -2f'(x)-1...

    Text Solution

    |

  11. If f(x)={alpha+sin[x]/x , x > 0 and 2 ,x=0 and beta+[(sin x-x)/x^3] ,x...

    Text Solution

    |

  12. If a function y=f(x) is defined as y=(1)/(t^(2)-t-6)and t=(1)/(x-2), t...

    Text Solution

    |

  13. If f(x) is continuous in [0,2] and f(0)=f(2). Then the equation f(x)=f...

    Text Solution

    |

  14. If lim(x to a) f(x)=lim(x to a) [f(x)] and f(x) is non-constant con...

    Text Solution

    |

  15. Let f : R rarr R be a differentiable function at x = 0 satisfying f(0)...

    Text Solution

    |

  16. For x in R, f(x) =|log(e) 2-sinx| and g(x) = f(f(x)) , then

    Text Solution

    |

  17. Let f:R to R and g:R to R be differentiable functions such that f(x)=x...

    Text Solution

    |

  18. Let f:square to square, g : square to square and h: square to square b...

    Text Solution

    |

  19. If h(x)= f(f(x)) for all x inR, and f(x)=x^3 + 3x+2 , then h(0) equals

    Text Solution

    |

  20. In Example 138, h(0) equals

    Text Solution

    |