Home
Class 12
MATHS
The value of k for which f(x)={{:(,[1+x(...

The value of k for which `f(x)={{:(,[1+x(e^(-1//x^(2)))sin(1/(x^(4)))]^(e^(1//x^(2))),x ne 0),(,k,x=0):}` is continuous at x=0, is

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( k \) for which the function \[ f(x) = \begin{cases} (1 + x e^{-\frac{1}{x^2}})^{e^{\frac{1}{x^2}}}, & x \neq 0 \\ k, & x = 0 \end{cases} \] is continuous at \( x = 0 \), we need to ensure that \[ \lim_{x \to 0} f(x) = f(0). \] ### Step 1: Find \( f(0) \) From the definition of the function, we have: \[ f(0) = k. \] ### Step 2: Evaluate the limit \( \lim_{x \to 0} f(x) \) We need to evaluate: \[ \lim_{x \to 0} (1 + x e^{-\frac{1}{x^2}})^{e^{\frac{1}{x^2}}}. \] ### Step 3: Analyze the expression As \( x \to 0 \): - \( x e^{-\frac{1}{x^2}} \to 0 \) because \( e^{-\frac{1}{x^2}} \) approaches 0 much faster than \( x \) approaches 0. - Thus, \( 1 + x e^{-\frac{1}{x^2}} \to 1 \). This means we have an expression of the form \( 1^{\infty} \). ### Step 4: Use the limit transformation To resolve the \( 1^{\infty} \) form, we can rewrite the limit using the exponential function: \[ \lim_{x \to 0} (1 + x e^{-\frac{1}{x^2}})^{e^{\frac{1}{x^2}}} = \lim_{x \to 0} e^{e^{\frac{1}{x^2}} \ln(1 + x e^{-\frac{1}{x^2}})}. \] ### Step 5: Simplify \( \ln(1 + x e^{-\frac{1}{x^2}}) \) Using the approximation \( \ln(1 + u) \approx u \) for small \( u \): \[ \ln(1 + x e^{-\frac{1}{x^2}}) \approx x e^{-\frac{1}{x^2}}. \] ### Step 6: Substitute back into the limit Now we have: \[ \lim_{x \to 0} e^{e^{\frac{1}{x^2}} \cdot x e^{-\frac{1}{x^2}}} = \lim_{x \to 0} e^{x}. \] ### Step 7: Evaluate the limit As \( x \to 0 \): \[ e^{x} \to e^{0} = 1. \] ### Step 8: Set the limit equal to \( f(0) \) Now we have: \[ \lim_{x \to 0} f(x) = 1. \] For continuity at \( x = 0 \): \[ f(0) = k \implies k = 1. \] ### Conclusion Thus, the value of \( k \) for which \( f(x) \) is continuous at \( x = 0 \) is: \[ \boxed{1}. \]

To determine the value of \( k \) for which the function \[ f(x) = \begin{cases} (1 + x e^{-\frac{1}{x^2}})^{e^{\frac{1}{x^2}}}, & x \neq 0 \\ k, & x = 0 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

The value of k for which f(x)={{:(,(x^(2^(32))-2^(32)x+4^(16)-1)/((x-1)^(2)),x ne 1),(,k,x=1):} is continuous at x=1, is

If f(x)={{:(,((4^(x)-1)^(3))/(sin(x//4)log(1+x^(2)//3)),x ne 0),(,k,x=0):} is a continous at x=0, then k=

If f(x) = {{:(x((e^(1//x) - e^(-1//x))/(e^(1//x)+e^(1//x)))",",x ne 0),(" "0",",x = 0):} , then at x = 0 f(x) is

Find the value of k for which the function f(x)= {((2x+3 sin x)/(3x+2sin x),"when " x ne 0),(4k,"when" x= 0):} is continuous at x= 0

If f(x)={{:((e^((2)/(x))-1)/(e^((2)/(x))+1),:,x ne 0),(0,:,x=0):} , then f(x) is

If f(x)= {{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}

If f(x) = (x-e^(x) + cos 2x)/(x^(2)), x ne 0 is continuous at x = 0, then

If f(x)={((1-coskx)/(xsinx) ,, x!=0),(1/2 ,, x=0):} is continuous at x=0, find k

If f(x) = {{:((log(1+2ax)-log(1-bx))/(x)",",x ne 0),(" "k",",x = 0):} is continuous at x = 0, then k is equal to

If f(x)={{:((sinpix)/(5x)",",x ne0),(k,","0):} is continuous at x=0 , then k is equal to

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section I - Solved Mcqs
  1. The functionf(x)={{:(,(x^(2))/(a),0 le x lt 1),(,a,1le x lt sqrt2),(,(...

    Text Solution

    |

  2. If f(x)={{:(,x([(1)/(x)]+[(2)/(x)]+.....+[(n)/(x)]),x ne 0),(,k,x=0):}...

    Text Solution

    |

  3. The value of k for which f(x)={{:(,[1+x(e^(-1//x^(2)))sin(1/(x^(4)))]^...

    Text Solution

    |

  4. Let f(x)={{:(,sum(r=0)^(x^(2)[(1)/(|x|)])r,x ne 0),(,k,x=0):} where [....

    Text Solution

    |

  5. If f (x)= {{:(|x|-3"," , x lt 1 ), (|x-2| + a"," , x ge 1):},g (x) = {...

    Text Solution

    |

  6. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  7. Let f:(0,oo)to R be a continuous function such that F(x)=int(0)^(x^(2)...

    Text Solution

    |

  8. A function f:R to R is differernitable and satisfies the equation f((1...

    Text Solution

    |

  9. Suppose f(x)=e^(ax)+e^(bx)," where " a ne b, and that f''(x) -2f'(x)-1...

    Text Solution

    |

  10. If f(x)={alpha+sin[x]/x , x > 0 and 2 ,x=0 and beta+[(sin x-x)/x^3] ,x...

    Text Solution

    |

  11. If a function y=f(x) is defined as y=(1)/(t^(2)-t-6)and t=(1)/(x-2), t...

    Text Solution

    |

  12. If f(x) is continuous in [0,2] and f(0)=f(2). Then the equation f(x)=f...

    Text Solution

    |

  13. If lim(x to a) f(x)=lim(x to a) [f(x)] and f(x) is non-constant con...

    Text Solution

    |

  14. Let f : R rarr R be a differentiable function at x = 0 satisfying f(0)...

    Text Solution

    |

  15. For x in R, f(x) =|log(e) 2-sinx| and g(x) = f(f(x)) , then

    Text Solution

    |

  16. Let f:R to R and g:R to R be differentiable functions such that f(x)=x...

    Text Solution

    |

  17. Let f:square to square, g : square to square and h: square to square b...

    Text Solution

    |

  18. If h(x)= f(f(x)) for all x inR, and f(x)=x^3 + 3x+2 , then h(0) equals

    Text Solution

    |

  19. In Example 138, h(0) equals

    Text Solution

    |

  20. Let a , b in R and f:R to R be defined by f(x) =a cos (|x^(3)-x|)+...

    Text Solution

    |