Home
Class 12
MATHS
Let f(x)={{:(,sum(r=0)^(x^(2)[(1)/(|x|)]...

Let `f(x)={{:(,sum_(r=0)^(x^(2)[(1)/(|x|)])r,x ne 0),(,k,x=0):}` where [.] denotes the greatest integer function. The value of k for which is continuous at x=0, is

A

1

B

2

C

4

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( k \) for which the function \( f(x) \) is continuous at \( x = 0 \). The function is defined as follows: \[ f(x) = \begin{cases} \sum_{r=0}^{\left\lfloor \frac{x^2}{|x|} \right\rfloor} r & \text{if } x \neq 0 \\ k & \text{if } x = 0 \end{cases} \] ### Step 1: Analyze the function for \( x \neq 0 \) For \( x \neq 0 \), we need to evaluate \( \left\lfloor \frac{x^2}{|x|} \right\rfloor \). Since \( |x| = x \) when \( x > 0 \) and \( |x| = -x \) when \( x < 0 \), we can analyze both cases: - If \( x > 0 \): \[ \frac{x^2}{|x|} = \frac{x^2}{x} = x \] Hence, \( \left\lfloor \frac{x^2}{|x|} \right\rfloor = \lfloor x \rfloor \). - If \( x < 0 \): \[ \frac{x^2}{|x|} = \frac{x^2}{-x} = -x \] Hence, \( \left\lfloor \frac{x^2}{|x|} \right\rfloor = \lfloor -x \rfloor \). ### Step 2: Evaluate the summation The summation \( \sum_{r=0}^{n} r \) for a non-negative integer \( n \) is given by the formula: \[ \sum_{r=0}^{n} r = \frac{n(n+1)}{2} \] Thus, we can express \( f(x) \) for \( x > 0 \) and \( x < 0 \): - For \( x > 0 \): \[ f(x) = \frac{\lfloor x \rfloor (\lfloor x \rfloor + 1)}{2} \] - For \( x < 0 \): \[ f(x) = \frac{\lfloor -x \rfloor (\lfloor -x \rfloor + 1)}{2} \] ### Step 3: Find the limit as \( x \) approaches 0 To ensure continuity at \( x = 0 \), we need to find: \[ \lim_{x \to 0} f(x) \] As \( x \) approaches 0 from the right (\( x \to 0^+ \)): \[ \lim_{x \to 0^+} f(x) = \frac{\lfloor 0 \rfloor (\lfloor 0 \rfloor + 1)}{2} = \frac{0(0 + 1)}{2} = 0 \] As \( x \) approaches 0 from the left (\( x \to 0^- \)): \[ \lim_{x \to 0^-} f(x) = \frac{\lfloor 0 \rfloor (\lfloor 0 \rfloor + 1)}{2} = \frac{0(0 + 1)}{2} = 0 \] ### Step 4: Set the limits equal to \( k \) For \( f(x) \) to be continuous at \( x = 0 \): \[ \lim_{x \to 0} f(x) = f(0) = k \] Thus, we have: \[ k = 0 \] ### Final Answer The value of \( k \) for which \( f(x) \) is continuous at \( x = 0 \) is: \[ \boxed{0} \]

To solve the problem, we need to determine the value of \( k \) for which the function \( f(x) \) is continuous at \( x = 0 \). The function is defined as follows: \[ f(x) = \begin{cases} \sum_{r=0}^{\left\lfloor \frac{x^2}{|x|} \right\rfloor} r & \text{if } x \neq 0 \\ k & \text{if } x = 0 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

if f(x) ={{:(2x-[x]+ xsin (x-[x]),,x ne 0) ,( 0,, x=0):} where [.] denotes the greatest integer function then

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

Let f(x)={(x(e^([x]+x)-4)/([x]+|x|), , x!=0),(3, , x=0):} Where [ ] denotes the greatest integer function. Then,

If f(x)={((sin([x]+x))/([x]+x),x!=0),(1,x=0):} when [.] denotes the greatest integer function, then:

Let f(x)={{:(x[(1)/(x)]+x[x],if, x ne0),(0,if,x=0):} (where [x] denotes the greatest integer function). Then the correct statement is/are

Let f(x)={{:(8^((1)/(x))",",xlt0,),(a[x]",",a inR-{0}",",xge0):} (where [.] denotes the greatest integer function). Then f(x) is

If f(x)={{:(e^(|x|+|x|-1)/(|x|+|x|),":",xne0),(-1,":",x=0):} (where [.] denotes the greatest integer integer function), then

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section I - Solved Mcqs
  1. If f(x)={{:(,x([(1)/(x)]+[(2)/(x)]+.....+[(n)/(x)]),x ne 0),(,k,x=0):}...

    Text Solution

    |

  2. The value of k for which f(x)={{:(,[1+x(e^(-1//x^(2)))sin(1/(x^(4)))]^...

    Text Solution

    |

  3. Let f(x)={{:(,sum(r=0)^(x^(2)[(1)/(|x|)])r,x ne 0),(,k,x=0):} where [....

    Text Solution

    |

  4. If f (x)= {{:(|x|-3"," , x lt 1 ), (|x-2| + a"," , x ge 1):},g (x) = {...

    Text Solution

    |

  5. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  6. Let f:(0,oo)to R be a continuous function such that F(x)=int(0)^(x^(2)...

    Text Solution

    |

  7. A function f:R to R is differernitable and satisfies the equation f((1...

    Text Solution

    |

  8. Suppose f(x)=e^(ax)+e^(bx)," where " a ne b, and that f''(x) -2f'(x)-1...

    Text Solution

    |

  9. If f(x)={alpha+sin[x]/x , x > 0 and 2 ,x=0 and beta+[(sin x-x)/x^3] ,x...

    Text Solution

    |

  10. If a function y=f(x) is defined as y=(1)/(t^(2)-t-6)and t=(1)/(x-2), t...

    Text Solution

    |

  11. If f(x) is continuous in [0,2] and f(0)=f(2). Then the equation f(x)=f...

    Text Solution

    |

  12. If lim(x to a) f(x)=lim(x to a) [f(x)] and f(x) is non-constant con...

    Text Solution

    |

  13. Let f : R rarr R be a differentiable function at x = 0 satisfying f(0)...

    Text Solution

    |

  14. For x in R, f(x) =|log(e) 2-sinx| and g(x) = f(f(x)) , then

    Text Solution

    |

  15. Let f:R to R and g:R to R be differentiable functions such that f(x)=x...

    Text Solution

    |

  16. Let f:square to square, g : square to square and h: square to square b...

    Text Solution

    |

  17. If h(x)= f(f(x)) for all x inR, and f(x)=x^3 + 3x+2 , then h(0) equals

    Text Solution

    |

  18. In Example 138, h(0) equals

    Text Solution

    |

  19. Let a , b in R and f:R to R be defined by f(x) =a cos (|x^(3)-x|)+...

    Text Solution

    |

  20. Let f:Rrarr(0,oo)andg:RrarrR be twice differentiable functions such th...

    Text Solution

    |