Home
Class 12
MATHS
If the function f(x)=|x|+|x-1|, then...

If the function `f(x)=|x|+|x-1|,` then

A

f(x) is continuous at x=0 as well as at x=1

B

f(x) is continuous at x=0, but not at x=1

C

f(x) is continuous at x=1, but not at x=0

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the function \( f(x) = |x| + |x - 1| \), we will analyze the function in different intervals based on the properties of the absolute value function. ### Step 1: Identify intervals based on the absolute values The function \( f(x) \) involves two absolute value expressions: \( |x| \) and \( |x - 1| \). We need to identify the points where the expressions inside the absolute values change sign. These points are \( x = 0 \) and \( x = 1 \). Thus, we will consider three intervals: 1. \( x < 0 \) 2. \( 0 \leq x < 1 \) 3. \( x \geq 1 \) ### Step 2: Simplify \( f(x) \) in each interval 1. **For \( x < 0 \)**: - Here, \( |x| = -x \) and \( |x - 1| = -(x - 1) = -x + 1 \). - Therefore, \[ f(x) = -x + (-x + 1) = -2x + 1. \] 2. **For \( 0 \leq x < 1 \)**: - Here, \( |x| = x \) and \( |x - 1| = -(x - 1) = -x + 1 \). - Therefore, \[ f(x) = x + (-x + 1) = 1. \] 3. **For \( x \geq 1 \)**: - Here, \( |x| = x \) and \( |x - 1| = x - 1 \). - Therefore, \[ f(x) = x + (x - 1) = 2x - 1. \] ### Step 3: Write the piecewise function Combining the results from the three intervals, we can express \( f(x) \) as: \[ f(x) = \begin{cases} -2x + 1 & \text{if } x < 0 \\ 1 & \text{if } 0 \leq x < 1 \\ 2x - 1 & \text{if } x \geq 1 \end{cases} \] ### Step 4: Check continuity at the points \( x = 0 \) and \( x = 1 \) 1. **At \( x = 0 \)**: - Left-hand limit (LHL): \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (-2x + 1) = -2(0) + 1 = 1. \] - Right-hand limit (RHL): \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (1) = 1. \] - Value of the function: \[ f(0) = 1. \] - Since LHL = RHL = \( f(0) \), the function is continuous at \( x = 0 \). 2. **At \( x = 1 \)**: - Left-hand limit (LHL): \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (1) = 1. \] - Right-hand limit (RHL): \[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (2x - 1) = 2(1) - 1 = 1. \] - Value of the function: \[ f(1) = 1. \] - Since LHL = RHL = \( f(1) \), the function is continuous at \( x = 1 \). ### Conclusion The function \( f(x) = |x| + |x - 1| \) is continuous at both \( x = 0 \) and \( x = 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=|x|+|x-1| is

Discuss the continuity and differentiability of the function f(x)=|x|+|x-1| in the interval (-1, 2).

Discuss the continuity and differentiability of the function f(x)=|x|+|x-1| in the interval (-1,2) .

Discuss the continuity and differentiability of the function f(x)=|x|+|x-1| in the interval (-1, 2).

The range of the function f(x)=|x-1|+|x-2|, -1 le x le 3, is

Discuss the continuity of the function f(x) = |x -1| at x=1

Find the maximum and minimum value of f if any of the function f(x)=|x-1|, x in R .

Find the points of discontinuity of the function: f(x)=[[x]]-[x-1],w h e r e[dot] represents the greatest integer function

Verify Lagrange's mean theorem for the function f(x) =x^(2) + x-1 in the interval [0,4]

Redefine the function f(x)= |1+x| +|1-x|, -2 le x le 2 .

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Exercise
  1. Let f(x) ={{:((x-4)/(|x-4|)+a,xlt4),(a+b,x=4),( (x-4)/(|x-4|)+b, x gt4...

    Text Solution

    |

  2. If the function f(x)={(cosx)^(1/x),x!=0k ,x=0 is continuous at x=0 , t...

    Text Solution

    |

  3. If the function f(x)=|x|+|x-1|, then

    Text Solution

    |

  4. Let f(x)={(x^4-5x^2+4)/(|(x-1)(x-2)|)\ \ \ \ ,\ \ \ x!=1,\ 1 6\ \ \ \ ...

    Text Solution

    |

  5. If the function f as defined below is continuous at x=0find the values...

    Text Solution

    |

  6. If f(x)=[{:(mx+1,if x le (pi)/(2)),(sinx+n,ifxgt(pi)/(2)):} is contin...

    Text Solution

    |

  7. The value of f(0), so that f(x)=(sqrt(a^(2)-ax+x^(2))-sqrt(a^(2)+ax+x^...

    Text Solution

    |

  8. (a) Draw the graph of f(x) = ={{:(1",",, |x| ge 1), ((1)/(n^(2)) ",",,...

    Text Solution

    |

  9. The value of f(0), so that the function f(x)=((27-2x)^2-3)/(9-3(243+5x...

    Text Solution

    |

  10. The value of f(0) so that the function f(x)=(2-(256-7x)^(1/8))/((5x+32...

    Text Solution

    |

  11. The following functions are continuous on (0, pi) (a) tan x (b)under...

    Text Solution

    |

  12. If f(x)=xsin1/x ,\ x!=0 , then the value of the function at x=0 , s...

    Text Solution

    |

  13. Let f(x) = [x] and g(x) = {{:(0",",x in Z),(x^(2)",",x in R - Z):}, th...

    Text Solution

    |

  14. Let f(x) = lim( n to oo) m ( sin x)^(2n) then which of the follow...

    Text Solution

    |

  15. Let f(x) be a function differentiable at x=c. Then underset(x to c)lim...

    Text Solution

    |

  16. If (lim)(x->c)(f(x)-f(c))/(x-c) exists finitely, write the value of...

    Text Solution

    |

  17. if f(x) ={{:( (x log cos x)/( log( 1+x^(2) )), x ne 0) ,( 0, x=0):}

    Text Solution

    |

  18. The function f(x)=|x|+|x-1| is

    Text Solution

    |

  19. For the function f(x)={{:(,|x-3|,x ge 1),(,(x^(2))/(4)-(3x)/(2)+(13)/(...

    Text Solution

    |

  20. Let f(x)={{:(,x^(n)sin\ (1)/(x),x ne 0),(,0,x=0):} Then f(x) is contin...

    Text Solution

    |