Home
Class 12
MATHS
Let g(x) be the inverse of f(x) and f'(x...

Let g(x) be the inverse of f(x) and `f'(x)=1/(1+x^(3))`.Find g'(x) in terms of g(x).

A

`(1)/(1+(g(x))^(3))`

B

`(1)/(1+(f(x))^(3))`

C

`1+(g(x))^(3)`

D

`1+(f(x))^(3)`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos

Similar Questions

Explore conceptually related problems

Let g (x) be then inverse of f (x) such that f '(x) =(1)/(1+ x ^(5)), then (d^(2) (g (x)))/(dx ^(2)) is equal to:

Let g (x) be then inverse of f (x) such that f '(x) =(1)/(1+ x ^(5)), then (d^(2) (g (x)))/(dx ^(2)) is equal to:

Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If g(2)=a then g'(2) is equal to

Let g (x) be the inverse of f (x) =(2 ^(x+1)-2^(1-x))/(2 ^(x)+2 ^(-x)) then g (x) be :

Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If f(2)=a then g'(2) is equal to

If g is the inverse of a function f and f'(x) = 1/(1+x^(5)) , then g'(x) is equal to

If g is the inverse of f and f'(x)=1/(1+x^n) , prove that g^(prime)(x)=1+(g(x))^n

Let g(x) be inverse of f(x) and f(x) is given by f(x)=int_3^x1/(sqrt(t^4+3t^2+13))dt then g^1(0)=

Let f(x)=int_(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x) . Then the value of 4 (g''(x))/(g(x)^(2)) is________.

Let f(x)=[x] and g(x)=|x| . Find (f+2g)(-1)

OBJECTIVE RD SHARMA ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Exercise
  1. Let f(x) be defined on R such that f(1)=2,f(2)=8 and f(u+v)=f(u)+kuv-2...

    Text Solution

    |

  2. Let f(x) be a function satisfying f(x+y)=f(x) + f(y) and f(x) = x...

    Text Solution

    |

  3. If f(x)={{:(,ax^(2)-b,|x|lt 1),(,(1)/(|x|),|x| ge1):} is differentiabl...

    Text Solution

    |

  4. If f(x)=(x-x(0)) phi (x) and phi(x) is continuous at x=x(0). Then f'(...

    Text Solution

    |

  5. Let f (x+y) =f (x) f (y) for all x and y, and f(5)=2, f'(0)=3, then f ...

    Text Solution

    |

  6. If f be a function satisfying f(x+y)=f(x)+f(y),AAx,yinR. If f(1) = k, ...

    Text Solution

    |

  7. Let f (x + y) = f(x) f(y) for all x, y, in R, suppose that f(3) = 3...

    Text Solution

    |

  8. Let f(x+y)=f(x)+f(y) and f(x)=x^2g(x)AA x,y in R where g(x) is continu...

    Text Solution

    |

  9. Let f(x+y)=f(x)f(y) for all x, y epsilon R and f(x)=1+x phi (x) l n 2 ...

    Text Solution

    |

  10. Let f(x+y)=f(x) f(y) and f(x)=1+(sin 2x)g(x) where g(x) is continuous....

    Text Solution

    |

  11. Let f(x+y)=f(x) f(y) and f(x)=1+(sin 2x)g(x) where g(x) is continuous....

    Text Solution

    |

  12. Let g(x) be the inverse of an invertible function f(x) which is differ...

    Text Solution

    |

  13. Let g(x) be the inverse of f(x) and f'(x)=1/(1+x^(3)).Find g'(x) in te...

    Text Solution

    |

  14. Let f(x)={{:(,x^(n)sin\ (1)/(x),x ne 0),(,0,x=0):} Then f(x) is contin...

    Text Solution

    |

  15. If for a continuous function f,f(0)=f(1)=0,f'(1)=2 and y(x)=f(e^(x))e^...

    Text Solution

    |

  16. Let f(x) be a function such that f(x+y)=f(x)+f(y) and f(x)=sin x g(x)...

    Text Solution

    |

  17. Let f(0,pi) to R be defined as f(x)={{:(,(1-sinx)/((pi-2x)^(2)).(In si...

    Text Solution

    |

  18. If f(x)=(e^(2x) - (1+4x)^(1//2))/(ln(1-x^2)) for x != 0, then f has

    Text Solution

    |

  19. Let f(x)={{:(,(ex^(2)-(2)/(pi)sin^(-1)sqrt(1-x))/(In(1+sqrtx)),x in (0...

    Text Solution

    |

  20. Let f(x)={{:(,x^(3),x lt 1),(,ax^(2)+bx+c,:x ge 1):}. If f''(1) exists...

    Text Solution

    |