Home
Class 12
MATHS
If the mean of x+2,\ 2x+3,\ 3x+4,\ 4x...

If the mean of `x+2,\ 2x+3,\ 3x+4,\ 4x+5\ i s\ x+2,` find `x`

A

0

B

1

C

-1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) given that the mean of the observations \( x + 2, 2x + 3, 3x + 4, 4x + 5 \) is equal to \( x + 2 \). ### Step-by-Step Solution: 1. **Identify the Observations**: The observations given are: \[ x + 2, \quad 2x + 3, \quad 3x + 4, \quad 4x + 5 \] 2. **Count the Number of Observations**: There are 4 observations in total. 3. **Calculate the Sum of the Observations**: We need to find the sum of the observations: \[ (x + 2) + (2x + 3) + (3x + 4) + (4x + 5) \] Simplifying this: \[ = x + 2 + 2x + 3 + 3x + 4 + 4x + 5 \] Combine like terms: \[ = (x + 2x + 3x + 4x) + (2 + 3 + 4 + 5) = 10x + 14 \] 4. **Set Up the Mean Equation**: The mean is given by the formula: \[ \text{Mean} = \frac{\text{Sum of Observations}}{\text{Number of Observations}} \] Substituting the values we have: \[ \frac{10x + 14}{4} = x + 2 \] 5. **Cross Multiply to Eliminate the Fraction**: Cross multiplying gives us: \[ 10x + 14 = 4(x + 2) \] 6. **Expand the Right Side**: Expanding the right side: \[ 10x + 14 = 4x + 8 \] 7. **Rearrange the Equation**: Move all terms involving \( x \) to one side and constant terms to the other side: \[ 10x - 4x = 8 - 14 \] This simplifies to: \[ 6x = -6 \] 8. **Solve for \( x \)**: Divide both sides by 6: \[ x = -1 \] ### Final Answer: The value of \( x \) is \( -1 \). ---

To solve the problem, we need to find the value of \( x \) given that the mean of the observations \( x + 2, 2x + 3, 3x + 4, 4x + 5 \) is equal to \( x + 2 \). ### Step-by-Step Solution: 1. **Identify the Observations**: The observations given are: \[ x + 2, \quad 2x + 3, \quad 3x + 4, \quad 4x + 5 ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If the mean of x+2,\ 2x+3,\ 3x+4,\ 4x+5 is x+2 , find x

Find the median of the following data if the value of x = 4 , x -4, 2x - 6, 3x-10 ,(x)/(2) - 1 , ( 3x)/( 2 x - 4) , x + 3, (x)/( 2), 2x + 7, 3x - 2, 2x -5

Find the coefficient of x^7 in the expansion of (1+2x + 3x^2 + 4x^3 + 5x^4 + 6x^5 + 7x^6 + 8x^7)^10

Find the value of x - (2-3x)/4+(3-2x)/5=2-x

If |[x+2, 3],[x+5, 4]|=3 , find the value of x

If (x^2 -x- 6)/(x^2 -4x +3)=4/3 , find x .

Find the derivative of (x^(3) - 3x^(2) + 4)(4x^(5) + x^(2) -1) :

Find the sum of x+2x^(2)+3x^(3)+4x^(4) +...

If (3x -4y) : (2x -3y) = (5x -6y) : (4x -5y) , find : x : y .

If 7x - 15y = 4x + y , find the value of x: y . Hence, use componendo and dividendo to find the values of : (i) (9x + 5y)/(9x - 5y) (iI) (3x^(2) + 2y^(2))/(3x^(2) - 2y^(2))