Home
Class 12
MATHS
The arithmetic mean of the following fre...

The arithmetic mean of the following frequency distribution:
`{:("Variate(X)" ,:,0,1,2,3, ..., n),("Frequency" (f),:,""^(n)C_(0),""^(n)C_(1),""^(n)C_(2),""^(n)C_(3),...,""^(n)C_(n)):}` is

A

`(2^(n))/(n)`

B

`(2^(n))/(n+1)`

C

`(n)/(2)`

D

`(2)/(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the arithmetic mean of the given frequency distribution, we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Variate and Frequency**: - The variate \( X \) is given as \( 0, 1, 2, 3, \ldots, n \). - The frequency \( f \) is given as \( \binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \ldots, \binom{n}{n} \). 2. **Write the Formula for Arithmetic Mean**: - The arithmetic mean \( \bar{X} \) is calculated using the formula: \[ \bar{X} = \frac{\Sigma (X \cdot f)}{\Sigma f} \] - Here, \( \Sigma (X \cdot f) \) is the sum of the product of each variate and its corresponding frequency, and \( \Sigma f \) is the total frequency. 3. **Calculate \( \Sigma f \)**: - The total frequency \( \Sigma f \) is: \[ \Sigma f = \sum_{r=0}^{n} \binom{n}{r} = 2^n \] - This is based on the binomial theorem, which states that the sum of the binomial coefficients equals \( 2^n \). 4. **Calculate \( \Sigma (X \cdot f) \)**: - We need to calculate \( \Sigma (X \cdot f) \): \[ \Sigma (X \cdot f) = 0 \cdot \binom{n}{0} + 1 \cdot \binom{n}{1} + 2 \cdot \binom{n}{2} + \ldots + n \cdot \binom{n}{n} \] - This can be expressed as: \[ \Sigma (X \cdot f) = \sum_{r=0}^{n} r \cdot \binom{n}{r} \] - Using the property of binomial coefficients, we know: \[ r \cdot \binom{n}{r} = n \cdot \binom{n-1}{r-1} \] - Therefore: \[ \Sigma (X \cdot f) = n \cdot \sum_{r=1}^{n} \binom{n-1}{r-1} = n \cdot 2^{n-1} \] 5. **Substitute into the Mean Formula**: - Now substitute \( \Sigma (X \cdot f) \) and \( \Sigma f \) into the mean formula: \[ \bar{X} = \frac{n \cdot 2^{n-1}}{2^n} \] 6. **Simplify the Expression**: - Simplifying the expression gives: \[ \bar{X} = \frac{n}{2} \] ### Final Answer: Thus, the arithmetic mean of the given frequency distribution is: \[ \bar{X} = \frac{n}{2} \]

To find the arithmetic mean of the given frequency distribution, we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Variate and Frequency**: - The variate \( X \) is given as \( 0, 1, 2, 3, \ldots, n \). - The frequency \( f \) is given as \( \binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \ldots, \binom{n}{n} \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The arithmetic mean of ""^(n)C_(0),""^(n)C_(1),""^(n)C_(2), ..., ""^(n)C_(n) , is

""^(n)C_(n-r)+3.""^(n)C_(n-r+1)+3.""^(n)C_(n-r+2)+""^(n)C_(n-r+3)=""^(x)C_(r)

The A.M. of the series .^(n)C_(0), .^(n)C_(1), .^(n)C_(2),….,.^(n)C_(n) is

(.^(n)C_(0))^(2)+(.^(n)C_(1))^(2)+(.^(n)C_(2))^(2)+ . . .+(.^(n)C_(n))^(2) equals

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

sum_(n=1)^(oo) (""^(n)C_(0) + ""^(n)C_(1) + .......""^(n)C_(n))/(n!) is equal to

Find the sum .^(n)C_(0) + 2 xx .^(n)C_(1) + xx .^(n)C_(2) + "….." + (n+1) xx .^(n)C_(n) .

Find .^(n)C_(1)-(1)/(2).^(n)C_(2)+(1)/(3).^(n)C_(3)- . . . +(-1)^(n-1)(1)/(n).^(n)C_(n)

(n+2)C_0(2^(n+1))-(n+1)C_1(2^(n))+(n)C_2(2^(n-1))-.... is equal to

Evaluate .^(n)C_(0).^(n)C_(2)+2.^(n)C_(1).^(n)C_(3)+3.^(n)C_(2).^(n)C_(4)+"...."+(n-1).^(n)C_(n-2).^(n)C_(n) .