Home
Class 12
MATHS
lim(x rarr2)(5)/(sqrt(2)-sqrt(x))...

`lim_(x rarr2)(5)/(sqrt(2)-sqrt(x))`

A

`10sqrt(2)`

B

`oo`

C

`-oo`

D

non -existant

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 2} \frac{5}{\sqrt{2} - \sqrt{x}} \), we will evaluate both the left-hand limit (LHL) and the right-hand limit (RHL) to determine if the limit exists. ### Step 1: Evaluate the Left-Hand Limit (LHL) The left-hand limit is evaluated as \( x \) approaches 2 from the left, which we denote as \( x \to 2^{-} \). \[ \text{LHL} = \lim_{x \to 2^{-}} \frac{5}{\sqrt{2} - \sqrt{x}} \] As \( x \) approaches 2 from the left, \( \sqrt{x} \) approaches \( \sqrt{2} \). Thus, \( \sqrt{2} - \sqrt{x} \) approaches \( 0 \) from the positive side, making the denominator approach \( 0^{+} \). \[ \text{LHL} = \frac{5}{0^{+}} = +\infty \] ### Step 2: Evaluate the Right-Hand Limit (RHL) The right-hand limit is evaluated as \( x \) approaches 2 from the right, denoted as \( x \to 2^{+} \). \[ \text{RHL} = \lim_{x \to 2^{+}} \frac{5}{\sqrt{2} - \sqrt{x}} \] As \( x \) approaches 2 from the right, \( \sqrt{x} \) approaches \( \sqrt{2} \). Thus, \( \sqrt{2} - \sqrt{x} \) approaches \( 0 \) from the negative side, making the denominator approach \( 0^{-} \). \[ \text{RHL} = \frac{5}{0^{-}} = -\infty \] ### Step 3: Conclusion Since the left-hand limit and the right-hand limit are not equal: \[ \text{LHL} = +\infty \quad \text{and} \quad \text{RHL} = -\infty \] The limit does not exist. \[ \lim_{x \to 2} \frac{5}{\sqrt{2} - \sqrt{x}} \text{ does not exist.} \] ### Final Answer The limit does not exist. ---

To solve the limit \( \lim_{x \to 2} \frac{5}{\sqrt{2} - \sqrt{x}} \), we will evaluate both the left-hand limit (LHL) and the right-hand limit (RHL) to determine if the limit exists. ### Step 1: Evaluate the Left-Hand Limit (LHL) The left-hand limit is evaluated as \( x \) approaches 2 from the left, which we denote as \( x \to 2^{-} \). \[ \text{LHL} = \lim_{x \to 2^{-}} \frac{5}{\sqrt{2} - \sqrt{x}} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|101 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)(sqrt(x+1)-sqrt(x))

lim_(x rarr 3)(x-3)/(sqrt(x-2)-sqrt(4-x))

lim_(xrarr2)(sqrt(x+2)-sqrt(x-2))/(x+2) is equal to

lim_(xrarr5)(sqrt(x+5)-sqrt(x-5))/(x+5) is equal to

lim_(x rarr0)(x)/(sqrt(6-x)-4)

Evaluate ("lim")_(xrarr0)(sqrt(2+x)-sqrt(2))/x

lim_(xrarr0) (sqrt(2+x)-sqrt(2))/(x)

lim_(x rarr1)(sqrt(1+x)+sqrt(1-x))/(1+x)

Evaluate the following: lim_(xrarr2)(x^2-4)/(sqrt(3x-2)-sqrt(6-x))

lim_(xrarr0) (sqrt(1+x^2)- sqrt(1+x))/(sqrt(1+x^3)-sqrt(1+x))

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Chapter Test
  1. lim(x rarr2)(5)/(sqrt(2)-sqrt(x))

    Text Solution

    |

  2. Let f(x)={(x^(2),x epsilonZ),((d(x^(2)-4))/(2-x),x !inZ):} the set of ...

    Text Solution

    |

  3. If Sn=sum(k=1)^n ak and lim(n->oo)an=a , then lim(n->oo)(S(n+1)-Sn)/sq...

    Text Solution

    |

  4. If a1=1a n da(n+1)=(4+3an)/(3+2an),ngeq1,a n dif("lim")(nvecoo)an=a , ...

    Text Solution

    |

  5. If x(1)=3 and x(n+1)=sqrt(2+x(n))" ",nge1, then underset(ntooo)limx(n)...

    Text Solution

    |

  6. The value of underset(xrarr0)(lim)(sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  7. Evaluate underset(ntooo)limncos((pi)/(4n))sin((pi)/(4n)).

    Text Solution

    |

  8. Evaluate ("lim")(n→oo){cos(x/2)cos(x/4)cos(x/8)... cos(x/(2^n))}

    Text Solution

    |

  9. If f(x) is the integral of (2 sin x - sin 2x )/(x ^ 3 ) , w...

    Text Solution

    |

  10. Evaluate: ("lim")(xvec0)x^m(logx)^n ,m , n in Ndot

    Text Solution

    |

  11. The value of lim(xrarroo) (logx)/(x^n), n gt 0, is

    Text Solution

    |

  12. underset(xtoa)lim(log(x-a))/(log(e^(x)-e^(a)))

    Text Solution

    |

  13. Let < an > be a sequence such that lim(x->oo)an=0. Then lim(n->oo)(a1...

    Text Solution

    |

  14. If f(a)=2,f^(prime)(a)=1,g(a)=-1,g^(prime)(a)=2, then the value of ("l...

    Text Solution

    |

  15. If f(9)=9,f^(prime)(9)=4,t h e n("lim")(nvecoo)(sqrt(f(x)-3))/(sqrt(x-...

    Text Solution

    |

  16. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  17. lim(x -> oo) x^n / e^x = 0, (n is an integer) for

    Text Solution

    |

  18. lim(xrarr0) (x)/(tan^-1x) is equal to

    Text Solution

    |

  19. If f(x) =x , x<0 and f(x)=1 , x = 0, and f(x)=x^2,x>0 then lim(x->0) ...

    Text Solution

    |

  20. Evaluate the following limits : Lim(x to oo) sqrt(((x+sin x)/(x- cos...

    Text Solution

    |

  21. Evaluate: ("lim")(xvecoo)(1+1/(a+b x))^(c+dx),w h e r ea , b , c ,a n ...

    Text Solution

    |