Home
Class 12
MATHS
lim (xrarr oo) (sqrt(x^2+x+1)-sqrt(x^2+1...

`lim _(xrarr oo) (sqrt(x^2+x+1)-sqrt(x^2+1))=`

A

`-(1)/(2)`

B

`(1)/(2)`

C

`1`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \left( \sqrt{x^2 + x + 1} - \sqrt{x^2 + 1} \right) \), we can follow these steps: ### Step 1: Rationalize the expression We start by multiplying and dividing by the conjugate of the expression: \[ \lim_{x \to \infty} \left( \sqrt{x^2 + x + 1} - \sqrt{x^2 + 1} \right) \cdot \frac{\sqrt{x^2 + x + 1} + \sqrt{x^2 + 1}}{\sqrt{x^2 + x + 1} + \sqrt{x^2 + 1}} \] This gives us: \[ \lim_{x \to \infty} \frac{(\sqrt{x^2 + x + 1} - \sqrt{x^2 + 1})(\sqrt{x^2 + x + 1} + \sqrt{x^2 + 1})}{\sqrt{x^2 + x + 1} + \sqrt{x^2 + 1}} \] ### Step 2: Simplify the numerator The numerator simplifies as follows: \[ \sqrt{x^2 + x + 1}^2 - \sqrt{x^2 + 1}^2 = (x^2 + x + 1) - (x^2 + 1) = x \] So we have: \[ \lim_{x \to \infty} \frac{x}{\sqrt{x^2 + x + 1} + \sqrt{x^2 + 1}} \] ### Step 3: Factor out \(x\) from the square roots Next, we factor \(x\) out of the square roots in the denominator: \[ \sqrt{x^2 + x + 1} = x\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} \quad \text{and} \quad \sqrt{x^2 + 1} = x\sqrt{1 + \frac{1}{x^2}} \] Substituting these into the limit gives us: \[ \lim_{x \to \infty} \frac{x}{x\left(\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} + \sqrt{1 + \frac{1}{x^2}}\right)} \] ### Step 4: Cancel \(x\) We can cancel \(x\) in the numerator and denominator: \[ \lim_{x \to \infty} \frac{1}{\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} + \sqrt{1 + \frac{1}{x^2}}} \] ### Step 5: Apply the limit As \(x\) approaches infinity, \(\frac{1}{x}\) and \(\frac{1}{x^2}\) both approach 0. Thus, we have: \[ \lim_{x \to \infty} \frac{1}{\sqrt{1 + 0 + 0} + \sqrt{1 + 0}} = \frac{1}{1 + 1} = \frac{1}{2} \] ### Final Answer The limit is: \[ \boxed{\frac{1}{2}} \]

To solve the limit \( \lim_{x \to \infty} \left( \sqrt{x^2 + x + 1} - \sqrt{x^2 + 1} \right) \), we can follow these steps: ### Step 1: Rationalize the expression We start by multiplying and dividing by the conjugate of the expression: \[ \lim_{x \to \infty} \left( \sqrt{x^2 + x + 1} - \sqrt{x^2 + 1} \right) \cdot \frac{\sqrt{x^2 + x + 1} + \sqrt{x^2 + 1}}{\sqrt{x^2 + x + 1} + \sqrt{x^2 + 1}} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|101 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)+1))

lim_(x rarr oo)(sqrt(x^(2)+x)-x)

lim_(x rarr oo)(sqrt(x+1)-sqrt(x))

The value of lim_(xrarr oo) (3sqrt(x^3+x^2)-3sqrt(x^3-x^2)) , is

lim_(x rarr oo)x{sqrt(x^(2)+1)-sqrt(x^(2)-1))}

lim_(xrarr0) (sqrt(2+x)-sqrt(2))/(x)

The value of lim_(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) equals

Evaluate : lim_(x to oo) sqrt(x^(2)+x +1) - sqrt(x^(2)+1)

lim_(xrarr0) (sqrt(x^(2)+1)-1)/(sqrt(x^(2)+9)-3)?

lim_(x->oo) (x-sqrt(x^2+x))

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Chapter Test
  1. lim (xrarr oo) (sqrt(x^2+x+1)-sqrt(x^2+1))=

    Text Solution

    |

  2. Let f(x)={(x^(2),x epsilonZ),((d(x^(2)-4))/(2-x),x !inZ):} the set of ...

    Text Solution

    |

  3. If Sn=sum(k=1)^n ak and lim(n->oo)an=a , then lim(n->oo)(S(n+1)-Sn)/sq...

    Text Solution

    |

  4. If a1=1a n da(n+1)=(4+3an)/(3+2an),ngeq1,a n dif("lim")(nvecoo)an=a , ...

    Text Solution

    |

  5. If x(1)=3 and x(n+1)=sqrt(2+x(n))" ",nge1, then underset(ntooo)limx(n)...

    Text Solution

    |

  6. The value of underset(xrarr0)(lim)(sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  7. Evaluate underset(ntooo)limncos((pi)/(4n))sin((pi)/(4n)).

    Text Solution

    |

  8. Evaluate ("lim")(n→oo){cos(x/2)cos(x/4)cos(x/8)... cos(x/(2^n))}

    Text Solution

    |

  9. If f(x) is the integral of (2 sin x - sin 2x )/(x ^ 3 ) , w...

    Text Solution

    |

  10. Evaluate: ("lim")(xvec0)x^m(logx)^n ,m , n in Ndot

    Text Solution

    |

  11. The value of lim(xrarroo) (logx)/(x^n), n gt 0, is

    Text Solution

    |

  12. underset(xtoa)lim(log(x-a))/(log(e^(x)-e^(a)))

    Text Solution

    |

  13. Let < an > be a sequence such that lim(x->oo)an=0. Then lim(n->oo)(a1...

    Text Solution

    |

  14. If f(a)=2,f^(prime)(a)=1,g(a)=-1,g^(prime)(a)=2, then the value of ("l...

    Text Solution

    |

  15. If f(9)=9,f^(prime)(9)=4,t h e n("lim")(nvecoo)(sqrt(f(x)-3))/(sqrt(x-...

    Text Solution

    |

  16. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  17. lim(x -> oo) x^n / e^x = 0, (n is an integer) for

    Text Solution

    |

  18. lim(xrarr0) (x)/(tan^-1x) is equal to

    Text Solution

    |

  19. If f(x) =x , x<0 and f(x)=1 , x = 0, and f(x)=x^2,x>0 then lim(x->0) ...

    Text Solution

    |

  20. Evaluate the following limits : Lim(x to oo) sqrt(((x+sin x)/(x- cos...

    Text Solution

    |

  21. Evaluate: ("lim")(xvecoo)(1+1/(a+b x))^(c+dx),w h e r ea , b , c ,a n ...

    Text Solution

    |