Home
Class 12
MATHS
The value of lim(x to 0) (e^x-e^sinx)/(2...

The value of `lim_(x to 0) (e^x-e^sinx)/(2(x-sinx))`, is

A

`-(1)/(2)`

B

`(1)/(2)`

C

`1`

D

`(3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{e^x - e^{\sin x}}{2(x - \sin x)} \), we can use Taylor series expansions for \( e^x \) and \( e^{\sin x} \) around \( x = 0 \). ### Step-by-Step Solution: 1. **Expand \( e^x \)**: The Taylor series expansion of \( e^x \) around \( x = 0 \) is: \[ e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + O(x^4) \] 2. **Expand \( e^{\sin x} \)**: First, we need the expansion of \( \sin x \): \[ \sin x = x - \frac{x^3}{6} + O(x^5) \] Now substituting \( \sin x \) into the expansion of \( e^x \): \[ e^{\sin x} = e^{x - \frac{x^3}{6} + O(x^5)} = 1 + \left(x - \frac{x^3}{6}\right) + \frac{(x - \frac{x^3}{6})^2}{2} + O((x - \frac{x^3}{6})^3) \] For simplicity, we can neglect higher order terms and approximate: \[ e^{\sin x} \approx 1 + \left(x - \frac{x^3}{6}\right) + \frac{x^2}{2} + O(x^4) \] 3. **Substituting the expansions**: Now substituting these expansions into the limit: \[ e^x - e^{\sin x} \approx \left(1 + x + \frac{x^2}{2}\right) - \left(1 + \left(x - \frac{x^3}{6}\right) + \frac{x^2}{2}\right) \] Simplifying this gives: \[ e^x - e^{\sin x} \approx x + \frac{x^3}{6} - x = \frac{x^3}{6} \] 4. **Expand \( x - \sin x \)**: We also need to expand \( x - \sin x \): \[ x - \sin x = x - \left(x - \frac{x^3}{6} + O(x^5)\right) = \frac{x^3}{6} + O(x^5) \] 5. **Substituting into the limit**: Now substituting back into the limit: \[ \lim_{x \to 0} \frac{e^x - e^{\sin x}}{2(x - \sin x)} = \lim_{x \to 0} \frac{\frac{x^3}{6}}{2 \cdot \frac{x^3}{6}} = \lim_{x \to 0} \frac{\frac{x^3}{6}}{\frac{x^3}{3}} = \lim_{x \to 0} \frac{1}{2} = \frac{1}{2} \] ### Final Answer: The value of the limit is: \[ \frac{1}{2} \]

To solve the limit \( \lim_{x \to 0} \frac{e^x - e^{\sin x}}{2(x - \sin x)} \), we can use Taylor series expansions for \( e^x \) and \( e^{\sin x} \) around \( x = 0 \). ### Step-by-Step Solution: 1. **Expand \( e^x \)**: The Taylor series expansion of \( e^x \) around \( x = 0 \) is: \[ e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + O(x^4) ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|101 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

Evaluate : lim_(xto 0) (e^(sinx)-1)/x

Evaluate lim_(xto0) (e^(x)-e^(xcosx))/(x+sinx).

Evaluate lim_(xto0) (e^(x)-e^(-x)-2x)/(x-sinx).

Using L'Hospital's rule, evaluate : lim_(x to 0) (x-sinx)/(x^(2)sinx) .

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is

The value of lim_(xtoa)(x sin a-a sinx)/(x-a) is

The value of lim_(xrarr0) ((sinx)/(x))^((sinx)/(x-sinx)) , is

The value of lim_(xrarroo) (sinx)/(x) , is

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

Evaluate lim_(x to 0) ((sinx)/(x))^(((sinx)/(x-sinx))).

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Chapter Test
  1. The value of lim(x to 0) (e^x-e^sinx)/(2(x-sinx)), is

    Text Solution

    |

  2. Let f(x)={(x^(2),x epsilonZ),((d(x^(2)-4))/(2-x),x !inZ):} the set of ...

    Text Solution

    |

  3. If Sn=sum(k=1)^n ak and lim(n->oo)an=a , then lim(n->oo)(S(n+1)-Sn)/sq...

    Text Solution

    |

  4. If a1=1a n da(n+1)=(4+3an)/(3+2an),ngeq1,a n dif("lim")(nvecoo)an=a , ...

    Text Solution

    |

  5. If x(1)=3 and x(n+1)=sqrt(2+x(n))" ",nge1, then underset(ntooo)limx(n)...

    Text Solution

    |

  6. The value of underset(xrarr0)(lim)(sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  7. Evaluate underset(ntooo)limncos((pi)/(4n))sin((pi)/(4n)).

    Text Solution

    |

  8. Evaluate ("lim")(n→oo){cos(x/2)cos(x/4)cos(x/8)... cos(x/(2^n))}

    Text Solution

    |

  9. If f(x) is the integral of (2 sin x - sin 2x )/(x ^ 3 ) , w...

    Text Solution

    |

  10. Evaluate: ("lim")(xvec0)x^m(logx)^n ,m , n in Ndot

    Text Solution

    |

  11. The value of lim(xrarroo) (logx)/(x^n), n gt 0, is

    Text Solution

    |

  12. underset(xtoa)lim(log(x-a))/(log(e^(x)-e^(a)))

    Text Solution

    |

  13. Let < an > be a sequence such that lim(x->oo)an=0. Then lim(n->oo)(a1...

    Text Solution

    |

  14. If f(a)=2,f^(prime)(a)=1,g(a)=-1,g^(prime)(a)=2, then the value of ("l...

    Text Solution

    |

  15. If f(9)=9,f^(prime)(9)=4,t h e n("lim")(nvecoo)(sqrt(f(x)-3))/(sqrt(x-...

    Text Solution

    |

  16. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  17. lim(x -> oo) x^n / e^x = 0, (n is an integer) for

    Text Solution

    |

  18. lim(xrarr0) (x)/(tan^-1x) is equal to

    Text Solution

    |

  19. If f(x) =x , x<0 and f(x)=1 , x = 0, and f(x)=x^2,x>0 then lim(x->0) ...

    Text Solution

    |

  20. Evaluate the following limits : Lim(x to oo) sqrt(((x+sin x)/(x- cos...

    Text Solution

    |

  21. Evaluate: ("lim")(xvecoo)(1+1/(a+b x))^(c+dx),w h e r ea , b , c ,a n ...

    Text Solution

    |