Home
Class 12
MATHS
The value of lim(xrarr0)((4^x-1)^3)/(sin...

The value of `lim_(xrarr0)((4^x-1)^3)/(sin.(x^2)/(4)log(1+3x))`,is

A

`(4)/(3)(In 4)^2`

B

`(4)/(3)(In 4)^3`

C

`(3)/(2)(In 4)^2`

D

`(3)/(2)(In 4)^3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{(4^x - 1)^3}{\frac{\sin(x^2)}{4} \log(1 + 3x)} \), we will use some fundamental limit properties. Let's break it down step by step. ### Step 1: Rewrite the limit We start with the expression: \[ \lim_{x \to 0} \frac{(4^x - 1)^3}{\frac{\sin(x^2)}{4} \log(1 + 3x)} \] We can rewrite this as: \[ \lim_{x \to 0} \frac{(4^x - 1)^3}{\sin(x^2) \cdot \frac{1}{4} \log(1 + 3x)} = 4 \cdot \lim_{x \to 0} \frac{(4^x - 1)^3}{\sin(x^2) \log(1 + 3x)} \] ### Step 2: Use limit properties We know the following limits: 1. \( \lim_{x \to 0} \frac{4^x - 1}{x} = \ln(4) \) 2. \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \) 3. \( \lim_{x \to 0} \frac{\log(1 + x)}{x} = 1 \) ### Step 3: Rewrite \( (4^x - 1)^3 \) Using the first property, we can express \( (4^x - 1) \) in terms of \( x \): \[ 4^x - 1 = x \cdot \frac{4^x - 1}{x} \to x \cdot \ln(4) \text{ as } x \to 0 \] Thus, \[ (4^x - 1)^3 = (x \cdot \ln(4))^3 = x^3 \cdot (\ln(4))^3 \] ### Step 4: Rewrite \( \sin(x^2) \) Using the second property, we have: \[ \sin(x^2) \approx x^2 \text{ as } x \to 0 \] ### Step 5: Rewrite \( \log(1 + 3x) \) Using the third property, we find: \[ \log(1 + 3x) \approx 3x \text{ as } x \to 0 \] ### Step 6: Substitute back into the limit Now substituting these approximations back into the limit: \[ \lim_{x \to 0} \frac{x^3 (\ln(4))^3}{x^2 \cdot 3x} = \lim_{x \to 0} \frac{x^3 (\ln(4))^3}{3x^3} = \frac{(\ln(4))^3}{3} \] ### Step 7: Multiply by 4 Finally, remember we factored out a 4 earlier: \[ 4 \cdot \frac{(\ln(4))^3}{3} = \frac{4(\ln(4))^3}{3} \] ### Final Answer Thus, the value of the limit is: \[ \frac{4(\ln(4))^3}{3} \]

To solve the limit \( \lim_{x \to 0} \frac{(4^x - 1)^3}{\frac{\sin(x^2)}{4} \log(1 + 3x)} \), we will use some fundamental limit properties. Let's break it down step by step. ### Step 1: Rewrite the limit We start with the expression: \[ \lim_{x \to 0} \frac{(4^x - 1)^3}{\frac{\sin(x^2)}{4} \log(1 + 3x)} \] We can rewrite this as: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|101 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

The value of lim_(x to 0) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^(2))/(3))) equals

The value of lim_(xrarr0)(1-cos^(3)x)/(xsinxcosx)

The value of lim_(xrarr0) (x(5^x-1))/(1-cos x) , is

lim_(xrarr0)(x^3 log x)

The value of lim_(xrarr2)(e^(3x-6)-1)/(sin(2-x)) , is

lim_(xrarr0) (3sqrt(1+x-1))/(x)

The value of lim_(xrarr0)((sinx)/(x))^((1)/(x^2)) , is

lim_(xrarr0)(4^x-1)/(3^x-1) equals

lim_(xrarr0)(sin(x)/(4))/(x)

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Chapter Test
  1. The value of lim(xrarr0)((4^x-1)^3)/(sin.(x^2)/(4)log(1+3x)),is

    Text Solution

    |

  2. Let f(x)={(x^(2),x epsilonZ),((d(x^(2)-4))/(2-x),x !inZ):} the set of ...

    Text Solution

    |

  3. If Sn=sum(k=1)^n ak and lim(n->oo)an=a , then lim(n->oo)(S(n+1)-Sn)/sq...

    Text Solution

    |

  4. If a1=1a n da(n+1)=(4+3an)/(3+2an),ngeq1,a n dif("lim")(nvecoo)an=a , ...

    Text Solution

    |

  5. If x(1)=3 and x(n+1)=sqrt(2+x(n))" ",nge1, then underset(ntooo)limx(n)...

    Text Solution

    |

  6. The value of underset(xrarr0)(lim)(sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  7. Evaluate underset(ntooo)limncos((pi)/(4n))sin((pi)/(4n)).

    Text Solution

    |

  8. Evaluate ("lim")(n→oo){cos(x/2)cos(x/4)cos(x/8)... cos(x/(2^n))}

    Text Solution

    |

  9. If f(x) is the integral of (2 sin x - sin 2x )/(x ^ 3 ) , w...

    Text Solution

    |

  10. Evaluate: ("lim")(xvec0)x^m(logx)^n ,m , n in Ndot

    Text Solution

    |

  11. The value of lim(xrarroo) (logx)/(x^n), n gt 0, is

    Text Solution

    |

  12. underset(xtoa)lim(log(x-a))/(log(e^(x)-e^(a)))

    Text Solution

    |

  13. Let < an > be a sequence such that lim(x->oo)an=0. Then lim(n->oo)(a1...

    Text Solution

    |

  14. If f(a)=2,f^(prime)(a)=1,g(a)=-1,g^(prime)(a)=2, then the value of ("l...

    Text Solution

    |

  15. If f(9)=9,f^(prime)(9)=4,t h e n("lim")(nvecoo)(sqrt(f(x)-3))/(sqrt(x-...

    Text Solution

    |

  16. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  17. lim(x -> oo) x^n / e^x = 0, (n is an integer) for

    Text Solution

    |

  18. lim(xrarr0) (x)/(tan^-1x) is equal to

    Text Solution

    |

  19. If f(x) =x , x<0 and f(x)=1 , x = 0, and f(x)=x^2,x>0 then lim(x->0) ...

    Text Solution

    |

  20. Evaluate the following limits : Lim(x to oo) sqrt(((x+sin x)/(x- cos...

    Text Solution

    |

  21. Evaluate: ("lim")(xvecoo)(1+1/(a+b x))^(c+dx),w h e r ea , b , c ,a n ...

    Text Solution

    |