Home
Class 12
MATHS
lim(xrarrpi//2)(a^(cotx)-a^cosx)/(cotx-c...

`lim_(xrarrpi//2)(a^(cotx)-a^cosx)/(cotx-cosx)a gt 0` is equal to

A

`log_(2)((pi)/(2))`

B

`log_e 2`

C

`log_e a`

D

`a`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \frac{\pi}{2}} \frac{a^{\cot x} - a^{\cos x}}{\cot x - \cos x} \) where \( a > 0 \), we can follow these steps: ### Step 1: Rewrite the Limit We start with the limit: \[ L = \lim_{x \to \frac{\pi}{2}} \frac{a^{\cot x} - a^{\cos x}}{\cot x - \cos x} \] ### Step 2: Factor out \( a^{\cos x} \) We can factor \( a^{\cos x} \) from the numerator: \[ L = \lim_{x \to \frac{\pi}{2}} \frac{a^{\cos x} \left( a^{\cot x - \cos x} - 1 \right)}{\cot x - \cos x} \] ### Step 3: Analyze the Exponent As \( x \to \frac{\pi}{2} \), both \( \cot x \) and \( \cos x \) approach 0. Thus, we can analyze the expression \( a^{\cot x - \cos x} - 1 \). Using the limit property \( \lim_{t \to 0} \frac{a^t - 1}{t} = \log a \) (where \( a > 0 \)), we set: \[ t = \cot x - \cos x \] As \( x \to \frac{\pi}{2} \), \( t \to 0 \). ### Step 4: Apply the Limit Property Now we can rewrite the limit: \[ L = \lim_{x \to \frac{\pi}{2}} a^{\cos x} \cdot \frac{a^{\cot x - \cos x} - 1}{\cot x - \cos x} \] By the limit property: \[ \frac{a^{\cot x - \cos x} - 1}{\cot x - \cos x} \to \log a \text{ as } x \to \frac{\pi}{2} \] ### Step 5: Evaluate \( a^{\cos x} \) As \( x \to \frac{\pi}{2} \), \( \cos x \to 0 \), hence: \[ a^{\cos x} \to a^0 = 1 \] ### Step 6: Combine the Results Putting it all together: \[ L = 1 \cdot \log a = \log a \] ### Step 7: Conclusion Thus, the limit evaluates to: \[ \lim_{x \to \frac{\pi}{2}} \frac{a^{\cot x} - a^{\cos x}}{\cot x - \cos x} = \log a \] ### Final Answer The final answer is: \[ \log a \text{ (option 3)} \]

To solve the limit \( \lim_{x \to \frac{\pi}{2}} \frac{a^{\cot x} - a^{\cos x}}{\cot x - \cos x} \) where \( a > 0 \), we can follow these steps: ### Step 1: Rewrite the Limit We start with the limit: \[ L = \lim_{x \to \frac{\pi}{2}} \frac{a^{\cot x} - a^{\cos x}}{\cot x - \cos x} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|101 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

("lim")_(xvecpi/2)(a^(cotx)-a^(cosx))/(cotx-cosx)i se q u a lto ln a (b) a (c) lna/2 (d) does not exist

The value of lim_(xrar2pi)(cos x-(cosx)^(cosx))/(1-cos x+ln(cosx)) is equal to

Lt_(xto0)(x^(2)cosx)/(1-cosx) is equal to

For agt0, let l=lim_(xto(pi)/2)(a^(cotx)-a^(cosx))/(cotx-cosc) and m=lim_(xto-oo)(sqrt(x^(2)+ax))-(sqrt(x^(2)-ax)) then solve it

lim_(xrarr0) (cosecx-cotx)

lim_(xrarr0)(x^(2)cosx)/(1-cosx) is equal to

The value of lim_(xrarr0)(((1-cos4x)(5+cosx))/(xtan5x)) is equal to

lim_(xrarroo) (cosx)/(x)=?

lim_(x->0)(x(e^x-1))/(1-cosx) is equal to

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(1+cotx)) is equal to (where, [.] denotes the greatest integer function )

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Chapter Test
  1. lim(xrarrpi//2)(a^(cotx)-a^cosx)/(cotx-cosx)a gt 0 is equal to

    Text Solution

    |

  2. Let f(x)={(x^(2),x epsilonZ),((d(x^(2)-4))/(2-x),x !inZ):} the set of ...

    Text Solution

    |

  3. If Sn=sum(k=1)^n ak and lim(n->oo)an=a , then lim(n->oo)(S(n+1)-Sn)/sq...

    Text Solution

    |

  4. If a1=1a n da(n+1)=(4+3an)/(3+2an),ngeq1,a n dif("lim")(nvecoo)an=a , ...

    Text Solution

    |

  5. If x(1)=3 and x(n+1)=sqrt(2+x(n))" ",nge1, then underset(ntooo)limx(n)...

    Text Solution

    |

  6. The value of underset(xrarr0)(lim)(sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  7. Evaluate underset(ntooo)limncos((pi)/(4n))sin((pi)/(4n)).

    Text Solution

    |

  8. Evaluate ("lim")(n→oo){cos(x/2)cos(x/4)cos(x/8)... cos(x/(2^n))}

    Text Solution

    |

  9. If f(x) is the integral of (2 sin x - sin 2x )/(x ^ 3 ) , w...

    Text Solution

    |

  10. Evaluate: ("lim")(xvec0)x^m(logx)^n ,m , n in Ndot

    Text Solution

    |

  11. The value of lim(xrarroo) (logx)/(x^n), n gt 0, is

    Text Solution

    |

  12. underset(xtoa)lim(log(x-a))/(log(e^(x)-e^(a)))

    Text Solution

    |

  13. Let < an > be a sequence such that lim(x->oo)an=0. Then lim(n->oo)(a1...

    Text Solution

    |

  14. If f(a)=2,f^(prime)(a)=1,g(a)=-1,g^(prime)(a)=2, then the value of ("l...

    Text Solution

    |

  15. If f(9)=9,f^(prime)(9)=4,t h e n("lim")(nvecoo)(sqrt(f(x)-3))/(sqrt(x-...

    Text Solution

    |

  16. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  17. lim(x -> oo) x^n / e^x = 0, (n is an integer) for

    Text Solution

    |

  18. lim(xrarr0) (x)/(tan^-1x) is equal to

    Text Solution

    |

  19. If f(x) =x , x<0 and f(x)=1 , x = 0, and f(x)=x^2,x>0 then lim(x->0) ...

    Text Solution

    |

  20. Evaluate the following limits : Lim(x to oo) sqrt(((x+sin x)/(x- cos...

    Text Solution

    |

  21. Evaluate: ("lim")(xvecoo)(1+1/(a+b x))^(c+dx),w h e r ea , b , c ,a n ...

    Text Solution

    |